
Learn Lua from JavaScript

Tyler Neylon

250.2016

Some languages are surprisingly easy to learn because they have so much in
common with a language you already know. If you know JavaScript, I have great
news: Lua will be ridiculously easy for you to learn. Just read this post.

Lua is an elegant, portable, fast, and embarrassingly flexible language. It runs on
any system that can compile C, which is probably why cross-platform frameworks
like Corona SDK or the Löve game engine were built with Lua. It’s fast enough
to be used for games — in fact, the original Angry Birds was built using Lua.
And it integrates well with other languages, making it an excellent choice as
the scripting language of Adobe Lightroom. Personally, I love Lua because it’s
beautifully designed and a pleasure to work with.

This post explains Lua in terms of JavaScript. I’ll use the term ES6 to refer
to the ECMAScript 6 standard, which is the latest official standard used for
JavaScript. Since this standard is still somewhat new, I’ll take the time to
explain any JavaScript features that were added in ES6.

Running Lua

Here is the official Lua installation page.

If you’re using homebrew on a Mac, you can run “brew install lua”. On
ubuntu, you can run “sudo apt-get install lua5.2”, although newer Lua
versions are available if you’re willing to build from source. For Windows, install
using LuaDist.

Building from source on Mac OS X or Linux is easy. The appropriate shell
commands are below. Replace linux by macosx on the last line if you’re running
this on Mac OS X:

curl -R -O http://www.lua.org/ftp/lua-5.3.2.tar.gz
tar zxf lua-5.3.2.tar.gz
cd lua-5.3.2
make linux test # Change linux -> macosx if you're on a Mac.

1

https://coronalabs.com/products/corona-sdk/
https://love2d.org/
http://es6-features.org/
http://www.lua.org/start.html
http://luadist.org/

Once the installation is complete, the lua command should be in your path.
Run it to see a prompt like this:

$ lua
Lua 5.3.2 Copyright (C) 1994-2015 Lua.org, PUC-Rio
>

Similar to node.js, you can use your favorite text editor to write a Lua script
such as my_file.lua and then execute it by running

$ lua my_file.lua

in your shell.

Comments and semicolons

Multiline comments in Lua begin with the token --[[and end with the token
]]. If the token -- is not followed by [[, then the rest of the line is a one-line
comment. For example:

print('Why, hello!') -- The `print` function prints a string.
--[[And this is a

multiline comment!]]

End-of-line semicolons in Lua are optional and are typically excluded.

Variable types and scope

Like JavaScript, Lua variables are dynamically typed, and memory is automat-
ically managed via garbage collection. Most of Lua’s types map nicely to a
corresponding JavaScript type.

Types

JavaScript type Lua type Example Lua values
Boolean boolean true or false
Null or Undefined nil nil
Number number 3.141
String string 'hi' or "there"
Object or Array table {a = 1, [2] = false}
Function function function () return 42 end
Symbol (ES6) unique tables

2

It’s handy to classify boolean values in terms of falsiness; that is, a value is
called falsy when it evaluates to false in a boolean context. The only falsy
values in Lua are nil and false. Compare this to JavaScript, where 0, the
empty string '', and undefined are also falsy.

Lua numbers, historically, were typically stored as floating point values — just
like JavaScript Numbers. Starting with Lua 5.3, Lua added the ability to work
with numbers that are internally stored as integers, increasing the range of
integral values that can be represented exactly. Intuitively, a Lua number is
stored as an integer when it begins life as an integer — for example, via an integer
literal — and continues to be stored this way until an operation is performed on
it that may result in a non-integer, such as division.

-- Lua
n = 100
print(n) --> 100; internally stored as an integer.
print(n * 2) --> 200; expression 'n * 2' is stored as an integer.
print(n / 2) --> 50.0; expression 'n / 2' is stored in floating-point.

Similar to JavaScript Objects, Lua’s table type is a catch-all data structure. A
table can work as either a hash table or an array. JavaScript Object keys must
be strings; Lua table keys can be any non-nil value whatsoever. Lua tables
are considered equal only if they are the same object, as opposed to having the
same contents:

-- Lua
myTable = {}
print(myTable == myTable) --> true
print(myTable == {}) --> false

Lua functions are first-class objects — they can be created anonymously,
assigned to variables, and passed to or returned from functions. They implicitly
become closures when they refer to any independent variable defined outside
the scope of the function itself. Lua functions also perform efficient tail calls,
meaning that the call stack doesn’t grow when a function ends by calling another
function.

Lua has two other types: userdata and thread. A userdata, intuitively, is an
object that’s been implemented in C using Lua’s C API. A userdata typically
acts like a table with private data, although its behavior can be customized to
appear non-private. A Lua thread is a coroutine, allowing a function to yield
values while preserving its own stack and internal state.

Scope and mutability

Lua variables are global by default. Lua’s local keyword is a bit like JavaScript’s
var keyword, except that Lua scopes aren’t hoisted. In other words, you can
think of Lua’s local keyword as similar to ES6’s let keyword.

3

http://www.lua.org/manual/5.3/manual.html#8.1
http://www.lua.org/manual/5.3/manual.html#8.1

-- Lua
phi = 1.618034 -- `phi` has global scope.
local gamma = 0.577216 -- `gamma` has local scope.

Lua doesn’t offer explicit protection for constant values or hidden values. However,
just as in JavaScript, you can create a new function at runtime which refers to
local variables, thus creating a closure. The variables referred to by a closure are
effectively private since they can be used by the function but not by any other
code. Lua functions will be covered later in this post.

Operators and expressions

Arithmetic operators like addition and multiplication are essentially the same
in Lua and JavaScript. Both languages have a remainder operator %, although
JavaScript’s % will return negative values when the left operand is negative, while
Lua’s % always returns nonnegative values. Lua can find numeric exponents
using the ˆ operator.

-- Lua
print(2 ^ 10) --> 1024.0
print(-2 % 7) --> 5

Lua supports operator overloading, which this post explains later on when we
get to the part about metatables. JavaScript has a ternary operator, while Lua
doesn’t; but you can achieve a similar result in Lua with the idiom below, which
relies on the fact that Lua’s short-circuited or and and operators return their
last-evaluated value.

-- Lua
local x = myBoolean and valueOnTrue or valueOnFalse

-- This is similar to the Javascript:
-- var x = myBoolean ? valueOnTrue : valueOnFalse;

That idiom works in all cases except when valueOnTrue is falsy.

Comparison

A typical best practice in JavaScript is to favor the === operator over the ==
operator since JavaScript invokes a confusing set of implicit coercions in the case
of ==. For ===, JavaScript only returns true when both values have the same
type.

Lua’s only equality operator, ==, shares this type requirement with JavaScript’s
=== operator. The example below features Lua’s built-in tonumber function,
which can parse a string representing a number.

4

-- Lua
print(6.0 * 7.0 == '42') --> false, different types
print(6.0 * 7.0 == tonumber('42')) --> true, both are numbers

Lua’s < and > operators return false when the operands have different types.
They sort strings alphabetically in a locale-sensitive manner, and numbers in
their typical numerical order.

Bitwise operators

Lua 5.3 introduced built-in bitwise operators, listed below. The operators in
this table are present in both Lua and JavaScript.

Operator Meaning
& bitwise AND
| bitwise OR
~ bitwise NOT, unary
<< bitwise left-shift

Lua’s ~ operator, in a binary context, is an exclusive or just like JavaScript’s ˆ
operator. Below are some examples.

-- Lua
print(6 & 18) --> 2; 00110b AND 10010b = 00010b.
print(6 | 18) --> 22; 00110b OR 10010b = 10110b.
print(6 ~ 18) --> 20; 00110b XOR 10010b = 10100b.

JavaScript distinguishes between the >> and >>> right-shift operators, with >>
preserving sign and >>> always filling in zero bits. Lua’s >> operator acts like
JavaScripts >>> operator — that is, it fills in new bits with zeros.

Functions, control flow, and assignment

Functions

Here’s a pair of example functions in Lua:

-- Lua
function reduce(a, b)
return b, a % b

end

function gcd(a, b) -- Find the greatest common divisor of a and b.

5

while b > 0 do
a, b = reduce(a, b)

end
return a

end

print(gcd(2 * 3 * 5, 2 * 5 * 7)) --> 10

Let’s start with the reduce function. The syntax for a Lua function is similar to
that of a JavaScript function, except that the opening brace { is dropped, and
the closing brace } is replaced with the end keyword.

If the statement “return b, a % b” were JavaScript, it would evaluate both
expressions b and a % b and then return the single value a % b. In Lua,
however, there is no comma operator — but return statements on the right side
of assignments can work with multiple comma-separated values. In this case,
Lua is returning both values, so the statement

a, b = reduce(a, b)

is effectively the same as this line:

a, b = b, a % b

having the simultaneous effect of the three lines below.

tmp = b
b = a % b
a = tmp

The reduce function can be replaced by a single line of code; I wrote it the
longer way to provide an example of multiple return values being assigned to
multiple variables.

Control flow

Here’s the mapping between JavaScript control flow and Lua control flow:

JavaScript Lua
while (condition) { . . . } while condition do . . . end
do { . . . } while (condition) repeat . . . until condition
for (var i =start; i <=end; i++) { . . . } for i =start, end do . . . end
for (key in object) { . . . } for key, value = pairs(object) do . . . end
for (value of object) { . . . } (ES6) for key, value = pairs(object) do . . . end
if (condition) . . . [else . . .] if condition1 do . . . [elseif conditition2 then . . .] [else . . .] end

Lua doesn’t have a completely general for statement like JavaScript; to replace

6

that, you’d need to use code like the following.

local i = startValue() -- Initialize.
while myCondition(i) do -- Check a loop condition.
doLoopBody()
i = step(i) -- Update any loop variables.

end

-- This is similar to JavaScript's:
-- for (var i = startValue; myCondition(i); i = step(i)) {
-- doLoopBody();
-- }

Flexible number of values

Lua can handle the simultaneous assignment of multiple values.

local a, b, c = 1, 2, 3

-- Now a = 1, b = 2, and c = 3.

In an assignment involving multiple right-hand expressions, all of the right-hand
expressions are evaluated and temporarily stored before any of the left-hand
variables change value. This order of operations is useful in some cases!

a, b = b, a -- This swaps the two values! Compare to the lines below.

a = b -- These two lines end up losing the original value of a.
b = a

If there are more values on the right side of an assigment than on the left, the
right-most values are discarded.

local a, b = 100, 200, 300, 400

-- Now a = 100 and b = 200.

If there are more variables on the left side, then the extra right-most variables
receive the value nil.

local a, b, c, d = 'Taco', 'Tuesday'

-- Now a = 'Taco', b = 'Tuesday', c = nil, and d = nil.

Return values from functions work similarly. In the code below, I’m creating
anonymous functions and then immediately calling them by appending the extra
set of parentheses at the end of the line.

local a, b = (function () return 1 end)()

7

-- Now a = 1, b = nil.

local a, b = (function () return 1, 2, 3 end)()

-- Now a = 1 and b = 2.

A function’s parameters are also flexible in that a function may be called with
arbitrarily many arguments. Overflow arguments are discarded, while unspecified
parameters get the default value nil.

function f(a, b)
print(a)
print(b)

end

f(1) --> 1, nil
f(1, 2) --> 1, 2
f(1, 2, 3) --> 1, 2

Objects

A JavaScript Array is a useful container type, and a JavaScript Object works
both as a container and as the basis for class-oriented interfaces. Lua’s table
type covers all of these use cases.

Containers

A JavaScript Object and a Lua table both act like hash tables with fast
operations to look up, add, or delete elements. While keys in JavaScript must
be strings, Lua keys can be any non-nil type. In particular, integer keys in Lua
are distinct from string keys.

The following snippets act differently because JavaScript converts all keys into
strings, whereas Lua doesn’t.

// JavaScript
a = {}
a[1] = 'int key'
a['1'] = 'str key'
console.log(a[1]) // Prints 'str key'.

-- Lua
a = {}
a[1] = 'int key'
a['1'] = 'str key'
print(a[1]) -- Prints 'int key'.

8

Here’s an example of a Lua table literal:

-- Lua
table1 = {aKey = 'aValue'}
table2 = {key1 = 'value1', ['key2'] = 'value2', [false] = 0, [table1] = table1}

Lua table literals are similar to JavaScript table literals, with the most obvious
difference being the use of an = character where JavaScript uses a colon :.
If a key is an identifier — that is, if the key matches the regular expression
“[a-zA-Z_]{a-zA-Z0-9_]*” — then it will work as an undecorated key, as in
{key = 'value'}. All other keys can be provided as a non-nil Lua expression
enclosed in square braces, as in {[1] = 2, ['3'] = 4}, where the first key is
an integer and the second is a string.

If you use a missing key on a Lua table, it’s not an error — instead the value is
considered nil. This is analogous to JavaScript returning undefined when you
use a missing key on an Object.

The equivalent of a JavaScript Array is a Lua table whose keys are contiguous
integers starting at 1. Some coders balk at 1-indexed arrays, but in my opinion
this is more of an unusual feature than a source of trouble. Lua is internally
consistent in using indices that begin at 1: characters within strings are also
1-indexed, and Lua’s internal C API uses a stack that begins with index 1. This
consistency makes the change feel relatively clean.

The example below illustrates some common Array-like Lua operations with
their JavaScript equivalents in comments.

-- Lua

-- Array initialization, access, and length.

luaArray = {'human', 'tree'} -- JS: jsArray = ['human', 'tree']
a = luaArray[1] -- JS: a = jsArray[0]
n = #luaArray -- JS: n = jsArray.length

-- Removing and inserting at the front.

first = table.remove(luaArray, 1) -- JS: first = jsArray.shift()
table.insert(luaArray, 1, first) -- JS: js.unshift(first)

-- Removing and inserting at the back.

table.insert(luaArray, 'raccoon') -- JS: jsArray.push('raccoon')
last = table.remove(luaArray, #luaArray) -- JS: last = jsArray.pop()

9

-- Iterate in order.
-- This loop style was added in ES6.

for index, value = ipairs(luaArray) do -- JS: for (var value of jsArray) {
-- Loop body. -- JS: // Loop body.

end -- JS: }

ES6 introduced JavaScript’s for .. of loops; earlier language versions could
use a loop like this instead:

// JavaScript
for (var i = 0; i < jsArray.length; i++) {
var value = jsArray[i];
// Loop body.

}

Operator overloading

Every Lua table can potentially have a metatable. A metatable is simply a Lua
table that provides extra functionality for the original table, such as operator
overloading. As an example, two tables can be added together if their metatable
has the special key __add and the value for this key is a function that accepts the
two tables as input. In that case, the expression table1 + table2 acts the same
as the function call aMetatable.__add(table1, table2), where aMetatable
is the metatable of table1 and table2.

The example below shows how we can use Lua tables to represent rational
numbers that can be added together. It uses the setmetatable function, which
sets its 2nd argument as the metatable of its 1st argument, and then returns the
1st argument.

-- Lua

-- The fraction a/b will be represented by a table with
-- keys 'a' and 'b' holding the numerator and denominator.

fractionMetatable = {}

fractionMetatable.__add = function (f1, f2)
local a, b = f1.a * f2.b + f1.b * f2.a, f1.b * f2.b
local d = gcd(a, b) -- This function was defined earlier in the post.
return setmetatable({a = a / d, b = b / d}, fractionMetatable)

end

fractionMetatable.__tostring = function (f)
return f.a .. '/' .. f.b -- The token `..` indicates string concatenation.

end

10

frac1 = setmetatable({a = 1, b = 2}, fractionMetatable) -- 1/2
frac2 = setmetatable({a = 1, b = 6}, fractionMetatable) -- 1/6

-- The following call implicitly calls __add and then __tostring.
print(frac1 + frac2) --> 2/3

Lua’s metatables may remind you of JavaScript’s prototypes, but they’re not
quite the same. The properties of a JavaScript prototype can be seen from the
inheriting Object, whereas in Lua, data stored in a metatable is not visible from
the base table by default. The example below illustrates this difference.

// JavaScript

a = {keyOfA: 'valueOfA'}
b = Object.create(a) // Now a is the prototype of b.
b.keyOfB = 'valueOfB'
console.log(b.keyOfA) // Prints out 'valueOfA'.

-- Lua

a = {keyOfA = 'valueOfA'}
b = setmetatable({}, a) -- Now a is the metatable of b.
b.keyOfB = 'valueOfB'
print(b.keyOfA) -- Prints out 'nil'; the lookup has failed.

Class-like behavior

Lua and JavaScript are both amenable to prototype-based programming, in
which class interfaces are defined using the same language type as the instances
of the class itself. I consider JavaScript’s class mechanics to be non-obvious, so
I’ll review those first, and then dive into the analogous workings of Lua.

Classes in JavaScript

The example below shows the traditional way of defining a class in JavaScript.

// JavaScript, pre-ES6

var Dog = function(sound) {
this.sound = sound;

}

Dog.prototype.sayHi = function() {

11

https://en.wikipedia.org/wiki/Prototype-based_programming

console.log(this.sound + '!');
}

Let’s see a usage example for this class, and then review how it works. The Dog
class can be instantiated with JavaScript’s new operator, as illustrated next.

// JavaScript

var rex = new Dog('woof');
rex.sayHi(); // Prints 'woof!'.

JavaScript’s new operator begins by creating a new object whose prototype is the
same as Dog’s prototype; then it calls the Dog function with this new object set
as the value of this. Finally, the new object is given as the return value from
the new operator. The end result a new object called rex with the key/value
pair { sound: 'woof' } and the same prototype as Dog.

images/pdfs/js_class_diagram.pdf

Figure 1: Both Dog and rex share the same prototype object. This is how
JavaScript class instances are able to call methods assigned to their constructor’s
prototype.

When rex.sayHi() is called, the key 'sayHi' is found to be missing on rex
itself, but the key is found to exist in rex’s prototype; this function in the
prototype is called. Because sayHi was called from the rex object — basically,
because rex was the prefix of the string rex.sayHi() used to make the call — the
sayHi function body is executed with this = rex. If you’d like to understand
JavaScript’s prototype-based object model in more detail, this Mozilla developer
network page is a good place to start.

ES6 introduced some fancy new notation for defining classes, shown below.

// JavaScript, ES6

class Dog {
constructor(sound) {
this.sound = sound;

}

sayHi() {
console.log(this.sound);

}

12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

}

That code is semantically identical to the traditional way of defining a class that
was shown above.

Classes in Lua

We’ve seen that JavaScript classes are based on prototypes, which are objects
themselves. Lua is similar in that both a class interface and a class instance are
viewed by the language as having the same type — specifically, both are tables.

The key mechanism used to connect class instances to interfaces is the overloading
of the __index operator via metatables. This operator is used whenever an
index is dereferenced on a table. For example, the line

a = myTable.myKey

is dereferencing the key myKey on the table myTable. If the __index operator is
overloaded and if myTable does not directly have a myKey key, then the __index
overloading function is called, and can effectively provide fallback values for keys.
This is analogous to the way rex.sayHi() worked in JavaScript even though
rex did not directly have a sayHi key.

Let’s take a look at a typical class definition and usage in Lua, and then cover
why it works.

-- Lua

-- Define the Dog class.

Dog = {}

function Dog:new(sound)
local newDog = {sound = sound}
self.__index = self
return setmetatable(newDog, self)

end

function Dog:sayHi()
print(self.sound .. '!')

end

-- Use the Dog class.

kepler = Dog:new('rarf')
kepler:sayHi() -- Prints 'rarf!'.

The Dog table is a standard Lua table. In the definition of the constructor, the

13

colon used in the syntax Dog:new(sound) is syntactic sugar for Dog.new(self,
sound). In other words, the colon-based function definition inserts a first
parameter called self. When the new function is called, a colon is used again, as
in Dog:new('rarf'). Again, the use of the colon is syntactic sugar, this time for
Dog.new(Dog, 'rarf'). In other words, a colon-based function call inserts the
object immediately before the colon as the first argument. The special variable
name self in Lua thus plays the role that this has in JavaScript. Whereas
JavaScript binds this implicitly, once you understand the syntactic sugar behind
Lua’s colon notation, it expresses a more explicit form of binding values to self.

The constructor Dog:new takes essentially the same steps as JavaScript’s new
operator. Specifically:

1. It creates a new table, internally called newDog, and assigns the value of
sound to the key 'sound'.

2. It sets self.__index = self. In our example, self = Dog, and Dog will
be the metatable of the new instance. This line makes sure that any failed
key lookups on the new instance fall back to key lookups on Dog itself.

3. It sets newDog’s metatable to self, which is the same as Dog, and returns
the new instance.

The resulting table relationship is shown below.

images/pdfs/lua_class_diagram.pdf

Figure 2: Dog is the metatable of the instance kepler. Because the key
'__index' in Dog has the value Dog, this means that any keys not found in
kepler will be looked for in Dog.

When the function kepler:sayHi() is called, the colon syntax is effectively the
same as kepler.sayHi(kepler). There is no sayHi key directly in the kepler
table, but kepler has a metatable with an '__index' key, so that is used to
find the sayHi key in Dog. The end result is the same as the function call
Dog.sayHi(kepler), where the parameter kepler is assigned to the variable
self inside that function.

Those are the fundamental mechanics of Lua classes. At first glance, it may seem
more involved than the JavaScript counterpart. The design of Lua consistently
employs smaller individual building blocks; for example, ES6 has 55% more
keywords than Lua 5.3, despite offering a similar set of features. The result of
finer-grained language design is greater flexibility and transparency into how
the system is working. In fact, there are numerous ways to set up your object-
oriented interfaces in Lua, and what I’ve covered in this post is simply one

14

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Reserved_keywords_as_of_ECMAScript_6
http://www.lua.org/manual/5.3/manual.html#3.1

common approach.

And more

This post covered the essentials of Lua, but there’s much more to the language.
Lua has a small but versatile set of standard libraries with operations on strings,
tables, and access to files. Lua has a C API that supports extending the language
with Lua-callable functions implemented in C, C++, or Objective-C. The C
API also makes it easy to call Lua scripts from one of these C-family languages.
LuaRocks is a package manager for Lua modules.

If you’re interested in taking the next step toward Lua mastery, I most humbly
recommend my own quick-reference style post Learn Lua in 15 Minutes. If
you enjoy long-form content with greater depth, I highly recommend Roberto
Ierusalimschy’s Programming in Lua.

15

http://www.lua.org/manual/5.3/manual.html#6
http://www.lua.org/manual/5.3/manual.html#6
https://luarocks.org/
http://tylerneylon.com/a/learn-lua/
http://www.amazon.com/Programming-Lua-Roberto-Ierusalimschy/dp/859037985X

	Running Lua
	Variable types and scope
	Operators and expressions
	Functions
	Objects
	Temporary example content
	Subheader

	References

