
Notes on Andrew Ng’s CS 229 Machine Learning
Course

Tyler Neylon

331.2016

These are notes I’m taking as I review material from Andrew Ng’s CS 229 course
on machine learning. Specifically, I’m watching these videos and looking at the
written notes and assignments posted here. These notes are available in two
formats: html and pdf.

I’ll organize these notes to correspond with the written notes from the class.

As I write these notes, I’m also putting together some homework solutions.

1 On lecture notes 1

The notes in this section are based on lecture notes 1.

1.1 Gradient descent in general

Given a cost function J(θ), the general form of an update is

θj := θj − α
∂J

∂θj
.

It bothers me that α is an arbitrary parameter. What is the best way to choose
this parameter? Intuitively, it could be chosen based on some estimate or actual
value of the second derivative of J . What can be theoretically guaranteed about
the rate of convergence under appropriate conditions?

Why not use Newton’s method? A general guess: the second derivative of J
becomes cumbersome to work with.

It seems worthwhile to keep my eye open for opportunities to apply improved
optimization algorithms in specific cases.

1

https://www.youtube.com/view_play_list?p=A89DCFA6ADACE599
http://cs229.stanford.edu/materials.html
http://tylerneylon.com/notes/cs229/cs229.html
http://tylerneylon.com/notes/cs229/cs229.pdf
http://tylerneylon.com/notes/cs229/cs229hw.html
http://cs229.stanford.edu/notes/cs229-notes1.pdf

1.2 Gradient descent on linear regression

I realize this is a toy problem because linear regression in practice is not solve
iteratively, but it seems worth understanding well. The general update equation
is, for a single example i,

θj := θj + α(y(i) − hθ(x(i)))x(i)
j .

The delta makes sense in that it is proportional to the error y − hθ, and in
that the sign of the product (y − hθ)x guarantees moving in the right direction.
However, my first guess would be that the expression (y − hθ)/x would provide
a better update.

For example, suppose we have a single data point (x, y) where x 6= 0, and a
random value of θ. Then a great update would be

θ1 := θ0 + (y − θ0x)/x,

since the next hypothesis value hθ would then be

hθ = θ1x = θ0x+ y − θ0x = y,

which is good. Another intuitive perspective is that we should be making bigger
changes to θj when xj is small, since it’s harder to influence hθ for such x values.

This is not yet a solidified intuition. I’d be interested in revisiting this question
if I have time.

1.3 Properties of the trace operator

The trace of a square matrix obeys the nice property that

tr AB = tr BA. (1)

One way to see this is to note that

tr AB = aijbji = tr BA,

where I’m using the informal shorthand notation that a variable repeated within
a single product implies that the sum is taken over all relevant values of that
variable. Specifically,

2

aijbji means
∑
i,j

aijbji.

I wonder if there’s a more elegant way to verify (1).

Ng gives other interesting trace-based equations, examined next.

• Goal: ∇Atr AB = BT .

Since

tr AB = aijbji,

we have that

(∇Atr AB)ij = bji,

verifying the goal.

• Goal: ∇AT f(A) = (∇Af(A))T .

This can be viewed as

(∇AT f(A))ij = ∂f

∂aji
= (∇Af(A))ji.

• Goal: ∇Atr(ABATC) = CAB + CTABT .

I’ll use some nonstandard index variable names below because I think it will
help avoid possible confusion. Start with

(ABATC)xy = axzbzwavwcvy.

Take the trace of that to arrive at

α = tr(ABATC) = axzbzwavwcvx.

Use the product rule to find ∂α
∂aij

. You can think of this as, in the equation
above, first setting xz = ij for one part of the product rule output, and then
setting vw = ij for the other part. The result is

(∇Aα)ij = bjwavwcvi + axzbzjcix = cviavwbjw + cixaxzbzj .

(The second equality above is based on the fact that we’re free to rearrange terms
within products in the repeated-index notation being used. Such rearrangement
is commutativity of numbers, not of matrices.)

3

This last expression is exactly the ijth entry of the matrix CAB + CTABT ,
which was the goal.

1.4 Derivation of the normal equation

Ng starts with

∇θJ(θ) = ∇θ
1
2(Xθ − y)T (Xθ − y),

and uses some trace tricks to get to

XTXθ −XT y.

I thought that the trace tricks were not great in the sense that if I were faced
with this problem it would feel like a clever trick out of thin air to use the trace
(perhaps due to my own lack of experience with matrix derivatives?), and in the
sense that the connection between the definition of J(θ) and the result is not
clear.

Next is another approach.

Start with ∇θJ(θ) = ∇θ 1
2 (θTZθ − 2yTXθ); where Z = XTX, and the doubled

term is a valid combination of the two similar terms since they’re both real
numbers, so we can safely take the transpose of one of them to add them together.

The left term, θTZθ, can be expressed as w = θi1Zijθj1, treating θ as an (n+1)×1
matrix. Then (∇θw)i1 = Zijθj1 + θj1Zji, using the product rule; so ∇θw = 2Zθ,
using that Z is symmetric.

The right term, v = yTXθ = yi1Xijθj1 with (∇θv)i1 = yj1Xji so that ∇θv =
XT y.

These all lead to ∇θJ(θ) = XTXθ −XT y as before. I think it’s clearer, though,
once you grok the sense that

∇θθTZθ = Zθ + (θTZ)T , and
∇θuT θ = u,

both as intuitively straightforward matrix versions of derivative properties.

I suspect this can be made even cleaner since the general product rule

∇(f · g) = (∇f) · g + f · (∇g)

holds, even in cases where the product fg is not a scalar; e.g., that it is vector-
or matrix-valued. But I’m not going to dive into that right now.

4

Also note that XTX can easily be singular. A simple example is X = 0, the
scalar value. However, if X is m× n with rank n, then XTXei = XTx(i) 6= 0
since 〈x(i), x(i)〉 6= 0. (If 〈x(i), x(i)〉 = 0 then X could not have rank n.) So XTX
is nonsingular iff X has rank n.

Ng says something in a lecture (either 2 or 3) that implied that (XTX)−1XT is
not the pseudoinverse of X, but for any real-valued full-rank matrix, it is.

1.5 A probabilistic motivation for least squares

This motivation for least squares makes sense when the error is given by i.i.d.
normal curves, and often this may seem like a natural assumption based on the
central limit theorem.

However, this same line of argument could be used to justify any cost function
of the form

J(θ) =
∑
i

f(θ, x(i), y(i)),

where f is intuitively some measure of distance between hθ(x(i)) and y(i). Specif-
ically, model the error term ε(i) as having the probability density function
e−f(θ,x(i),y(i)). This is intuitively reasonable when f has the aforementioned
distance-like property, since error values are likely near zero and unlikely far
from zero. Then the log likelihood function is

`(θ) = logL(θ) = log
∏
i

e−f(θ,x(i),y(i)) =
∑
i

−f(θ, x(i), y(i)),

so that maximizing L(θ) is the same as minimizing the J(θ) defined in terms
of this arbitrary function f. To be perfectly clear, the motivation Ng provides
only works when you have good reason to believe the error terms are indeed
normal. At the same time, using a nice simple algorithm like least squares is
quite practical even if you don’t have a great model for your error terms.

1.6 Locally weighted linear regression (LWR)

This idea is that, given a value x, we can choose θ to minimize the modified cost
function

∑
i

w(i)(y(i) − θTx(i))2,

where

5

w(i) = exp
(
− (x(i) − x)2

2τ2

)
.

I wonder: Why not just compute the value

y =
∑
i w

(i)y(i)∑
i w

(i)

instead?

I don’t have a strong intuition for which approach would be better, although the
linear interpolation is more work (unless I’m missing a clever way to implement
LWR that wouldn’t also work for the simpler equation immediately above). This
also reminds me of the k−nearest neighbors algorithm, though I’ve seen that
presented as a classification approach while LWR is regression. Nonetheless,
perhaps one could apply a locality-sensitive hash to quickly approximately find
the k nearest neighbors and then build a regression model using that.

1.7 Logistic regression

This approach uses a hypothesis function of the form

hθ(x) = g(θTx),

where

g(z) = 1/(1 + e−z).

The update equation from gradient descent turns out to be nice for this setup.
However, besides “niceness,” it’s not obvious to me why the logistic function g
is signifcantly better than any other sigmoid function.

In general, suppose

hθ(x) = τ(θTx),

where τ is any sigmoid function. Then

[∇θ`(θ)]j =
∑
i

(
y(i)

h(i) −
1− y(i)

1− h(i)

)
∂τ (i)

∂θj
.

Here, τ (i) indicates the function τ evaluated on θ and x(i). We can split up the
term inside the sum like so:

6

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

a(i) = y(i)

h(i) −
1− y(i)

1− h(i) = y(i) − h(i)

h(i)(1− h(i)) ,

and

b(i) = ∂τ (i)

∂θj
.

Intuitively, the value of a(i) makes sense as it’s the error of h(i) weighted more
heavily when a wrong output value of h is given with higher confidence. The
value b(i) makes sense as the direction in which we’d want to move θj in order
to increase τ (i). Multiplied by the sign of a(i), the end result is a movement of
θj that decreases the error.

It’s not obvious to me which choice of function τ is best. Consider, for example,
the alternative function

τ(z) = arctan(z)
π

+ 1
2 .

In this case, when z = θTx,

b(i) = ∂τ (i)

∂θj
=

x
(i)
j

1 + (θTx)2 .

In general, sigmoid functions will tend to give a value of b(i) that is small when
|θTx| is large, symmetric around θTx = 0, and has the same sign as xj since
τ − 1/2 will be an increasing odd function; the derivative of an increasing odd
function is even and positive; and this positive even function will be multiplied
by xj to derive the final value of b(i). The values of b(i) will be small for large
|θTx| because τ(θTx) necessarily flattens out for large input values (since it’s
monotonic and bounded in [0, 1]).

Ng states that the assumption of a Bernoulli distribution for p(y|x; θ) results in
the traditional gradient update rule for logistic regression, but there is another
choice available in the argument. The definition of a Bernoulli distribution
means that we must have

p(y|x; θ) =
{
hθ(x) if y = 1, and
1− hθ(x) otherwise.

There are a number of expressions that also capture this same behavior for the
two values y = 0 and y = 1. The one used in the course is

7

p(y|x; θ) = hy(1− h)1−y,

which is convenient since we’re working with the product p(y) =
∏
i p(y(i)).

However, we could have also worked with

p(y|x; θ) = yh+ (1− y)(1− h),

which also gives exactly the needed values for the cases y = 1 and y = 0. Although
the traditional expression is easier to work with, it seems worth nothing that
there is a choice to be made.

1.8 Using Newton’s method for logistic regression

Ng provides the alternative logistic regression update formula

θ := θ −H−1∇θ`(θ) (2)

without justifying it beyond explaining that it’s the vector version of what one
would do in a non-vector setting for finding an optima of `′(θ), namely,

θ := θ − `′(θ)
`′′(θ) .

The H in the above equation is the Hessian of `, which I’ll write as

H = (hij) =
(

∂2`

∂θi∂θj

)
.

Here is one way to arrive at (2):

[
∇`(θ + α)

]
i
≈
[
∇`(θ)

]
i
+
∑
j

∂

∂θj

[
∇`(θ)

]
i
· αj . (3)

This is the linearized approximation of ∇` around θ; another perspective is to
see this as the first-order Taylor polynomial of

[
∇`
]
i
around θ.

We can rewrite (3) more concisely as

∇`(θ + α) ≈ ∇`(θ) +Hα. (4)

8

Recall that our goal is to iterate on θ toward a solution to ∇`(θ) = 0. Use (4)
toward this end by looking for α which solves ∇`(θ + α) ≈ 0. If H is invertible,
then we have

∇`(θ) +Hα = 0 ⇔ Hα = −∇`(θ) ⇔ α = −H−1∇`(θ).

In other words, the desired iteration is

θ := θ + α = θ −H−1∇`(θ),

which confirms the goal, equation (2).

1.9 The exponential family

A class of distributions fits within the exponential family when there are functions
a, b, and T such that

p(y; η) = b(y) exp(ηTT (y)− a(η)) (5)

expresses a distribution in the class.

Ng uses this form to justify the particular use of g(z) = 1/(1 + e−z) in logistic
regression. I see how expressing a Bernoulli distribution in this form naturally
result in the traditional form of logistic regression. However, as of the end of
lecture 4, I don’t think Ng has justified the power of the exponential family
beyond explaining that it captures many popular distribution classes. (To be
clear, I believe that this idea is very useful; I just am not convinced that why
it’s useful has been explicitly explained yet.)

I haven’t fully grokked the exponential family yet, but I noticed that the main
restriction in expression (5) seems to be that the only interaction between η
and y is multiplicative in the sense that we could equally-well have written the
density function as

p(y; η) = b(y)c(η)
∏
i

di(yi)ηi ,

in the case that both η and y are vectors.

1.10 Generalized linear models

Ng doesn’t spell this out, but I think the following line of argument is why
generalized linear models are considered useful.

9

Suppose η = θTx and that we’re working with a distribution parametrized by η
that can be expressed as

p(y; η) = b(y) exp
(
ηTT (y)− a(y)

)
.

Then the log likelihood function is given by

`(θ) =
∑
i

log
(
p(y(i); η(i))

)
=
∑
i

log(b(y(i))) + η(i)TT (y(i))− a(η(i)).

We can express the gradient of this as

∇`(θ) =
∑
i

x(i)(T (y(i))− a′(η(i))
)
,

which corresponds to the gradient ascent update rule

θ := θ + α
(
T (y)− a′(θTx)

)
x. (6)

Let’s see how this nice general update rule looks in a couple special cases. For
simplicity, I’ll stick to special cases where η is a scalar value.

1.10.1 Gaussian GLM

In this case, a(η) = η2/2 so a′(η) = η; and T (y) = y. Then the update rule (6)
becomes

θ := θ + α(y − θTx)x,

which is just gradient ascent applied to least squares.

1.10.2 Logistic regression GLM

In this case, a(η) = log(1 + eη) and T (y) = y. So a′(η) = 1/(1 + e−η), and we
can write the update rule (6) as

θ := θ + α(y − g(θTx))x,

where g is the logistic function. This matches the earlier update equation we
saw for logistic regression, suggesting that our general approach isn’t completely
insane. It may even be technically correct.

10

2 On lecture notes 2

The notes in this section are based on lecture notes 2.

2.1 Why Gaussian discriminant analysis is like logistic re-
gression

Ng mentions this fact in the lecture and in the notes, but he doesn’t go into the
details of justifying it, so let’s do that.

The goal is to show that

p(y = 1 | x) = 1
1 + e−θT x

, (7)

where θ is some function of the learned parameters φ, Σ, µ0, and µ1; and we
can consider x as being augmented by a new coordinate x0 = 1 to effectively
allow the addition of a constant in the expression θTx. In Gaussian discriminant
analysis, we learn a model for p(x | y) and for p(y). Specifically,

p(y) = φy(1− φ)1−y,
p(x | y = 0) = N(µ0,Σ), and
p(x | y = 1) = N(µ1,Σ),

where N(µ,Σ) indicates the multivariate normal distribution. From this we can
derive

p(y = 1 | x) = p(x | y = 1)p(y = 1)/p(x). (8)

For j = 0, 1, let Aj = p(x | y = j). Then we can write

p(x) = p(x | y = 0)p(y = 0) + p(x | y = 1)p(y = 1) = A0(1− φ) +A1φ.

Plug this expression for p(x) back into (8) to get

p(y = 1 | x) = φA1

(1− φ)A0 + φA1
= 1

1 + A0
A1

(
1−φ
φ

) . (9)

At this point it will be useful to introduce the shorthand notation

〈x, y〉 := xTΣ−1y,

11

http://cs229.stanford.edu/notes/cs229-notes2.pdf

noting that this is linear in both terms just as the usual inner product is. It will
also be convenient to define

Bj = 〈x− µj , x− µj〉 = 〈x, x〉 − 2〈µj , x〉+ 〈µj , µj〉.

Our ultimate goal (7) can now be reduced to showing that the denominator of
(9) is of the form 1 + exp(a〈b, x〉+ c) for some constants a, b, and c.

Notice that

A0

A1
= exp(−1/2B0)

exp(−1/2B1) = exp
(

1
2(B1 −B0)

)
= exp

(
1
2
(
〈2µ0 − 2µ1, x〉+ C

))
,

where C is based on the terms of Bj that use µj but not x. The scalar factor
of A0/A1 in (9) can also be absorbed into the constant c in the expression
exp(a〈b, x〉 + c). This confirms that the denominator of (9) is indeed of the
needed form, confirming the goal (7).

2.2 Naive Bayes

I’ve heard that, in practice, naive Bayes works well for spam classification. If its
assumption is so blatantly false, then why does it work so well? I don’t have an
answer, but I wanted to mention that as an interesting question.

Also, independence of random variables is not just a pair-wise property. You could
have three random variables x1, x2, and x3 which are all pair-wise independent,
but not independent as a group. As an example of this, here are three random
variables defined as indicator functions over the domain {a, b, c, d} :

x1(w) = [w ∈ {a, b}]
x2(w) = [w ∈ {b, d}]
x3(w) = [w ∈ {a, d}]

If we know the value of xi for any i, then we have no extra information about
the value of xj for any j 6= i. However, if we know any two values xi and xj ,
then we’ve completely determined the value of xk.

This is all leading up to the point that the naive Bayes assumption, stated
carefully, is that the entire set of events {xi | y} is independent, as opposed to
just pair-wise independent.

I’m curious about any theoretical justification for Laplace smoothing. As pre-
sented so far, it mainly seems like a hacky way to avoid a potential implementation
issue.

12

3 On lecture notes 3

The notes in this section are based on lecture notes 3.

3.1 Support vector machines

At one point, Ng says that any constraint on w will work to avoid the problem
that maximizing the functional margin simply requires making both w and b
larger. However, I think many constraints make less sense than ||w|| = 1. The
only case that doesn’t fit well with ||w|| = 1 is the case that the best weights
are actually w = 0, but this vector can only ever give a single output, so it’s
useless as long as we have more than one label, which is the only interesting
case. On the other hand, a constraint like |w3| = 1 would avoid the exploding
(w, b) problem, but it may be the case that the best weight vector has w3 = 0,
which would fail to be found under such a constraint. In general, constraints
tend to assume that some subset of values in (w, b) are nonzero, and anything
more specific than ||w|| = 1 would add an assumption that may end up missing
the truly optimal weights.

3.1.1 max min ≤ min max

Ng notes that for any function f(x, y),

max
x

min
y
f(x, y) ≤ min

y
max
x

f(x, y).

Let’s justify this. Let

x0 = argmaxx min
y
f(x, y), and

y0 = argminy max
x

f(x, y).

Then

max
x

min
y
f(x, y) = min

y
f(x0, y)

≤ f(x0, y0)
≤ max

x
f(x, y0) = min

y
max
x

f(x, y),

which completes the proof.

There are only two inequalities in that proof; if they were equalities, then the
final result would itself be an equality as well. Specifically, if (x0, y0) is a saddle
point in the sense that

13

http://cs229.stanford.edu/notes/cs229-notes3.pdf

f(x, y0) ≤ f(x0, y0) ≤ f(x0, y) ∀x, y,

then

max
x

min
y
f(x, y) = min

y
max
x

f(x, y).

3.1.2 The name of kernels

Quick side question: Why are kernels called kernels?

I found this link which states that the word kernel, in mathematics, was first
used in the context of a group homomorphism f to indicate the set f−1(0),
the pre-image of the identity element. Interpreting the word kernel as meaning
something like core or seed, this usage in group theory makes sense when thinking
about the first isomorphism theorem.

In the context of SVMs, the name kernel comes from the idea of a positive-
definite kernel, which originated mainly in work done by James Mercer, although
as far as I can tell the actual name positive-definite kernel came from a 1904
paper of David Hilbert on Fredholm integral equations of the second kind.

Based on this math.stackexchange answer, it sounds like the group-theoretic and
algebraic use cases — that is, the two listed above — of the word kernel are not
formally linked. Rather, it seems that Ivar Fredholm used the French word noyau
in a paper on integral equations that later became kernel in the aforementioned
paper of Hilbert. Noyau roughly means core, and was perhaps used because it
is inside an integral when a convolution is performed. The referenced answer
states that the original Hilbert paper never justifies the term, so I suppose it’s
up to folks who understand that paper to make an educated guess as to why it
was chosen; or by looking at the corresponding Fredholm paper.

3.1.3 The Gaussian kernel

Let’s confirm that the Gaussian kernel is indeed a kernel. As a side note, this
kernel is also referred to as the radial basis function kernel, or the RBF kernel.

I had some difficulty proving this myself, so I found this answer by Douglas Zare
that I’ll use as the basis for this proof.

The goal is to show that the function

k(x, y) = exp
(
−||x− y||2

2σ2

)
is a kernel.

14

http://math.stackexchange.com/questions/500920/word-origin-meaning-of-kernel-in-linear-algebra
https://en.wikipedia.org/wiki/Fundamental_theorem_on_homomorphisms#Group_theoretic_version
https://en.wikipedia.org/wiki/Positive-definite_kernel
https://en.wikipedia.org/wiki/Positive-definite_kernel
http://math.stackexchange.com/a/1281138/10785
http://stats.stackexchange.com/a/35638/123609

The proof will proceed by providing a function φw such that the inner product
〈φx, φy〉 = k(x, y) for any vectors x, y ∈ Rn. I’ll be using an inner product defined
on functions of Rn as in

〈f, g〉 =
∫
Rn

f(z)g(z)dz.

Begin by letting cσ =
(√

2
σ
√
π

)n/2
. Define

φw(z) = cσ exp
(
−||z − w||2

σ2

)
.

Then

〈φx, φy〉 =
∫
Rn

c2
σ exp

(
−||z − x||2

σ2

)
exp

(
−||z − y||2

σ2

)
dz.

Let

a = x+ y

2 , b = x− y
2 , v = z − a,

so that

z − x = z − a− b = v − b,
z − y = z − a+ b = v + b.

Then

〈φx, φy〉 = c2
σ

∫
exp

(
−||v − b||2 − ||v + b||2

σ2

)
dv

= c2
σ

∫
exp

(
−2||v||2 − 2||b||2

σ2

)
dv.

The last equation uses the facts that ||v− b||2 = 〈v− b, v− b〉 = 〈v, v〉 − 2〈v, b〉+
〈b, b〉, and that, similarly, ||v + b||2 = ||v||2 + 2〈v, b〉+ ||b||2.

Continuing,

〈φx, φy〉 = c2
σ exp

(
−2||b||2
σ2

)∫
exp

(
−2||v||2
σ2

)
dv.

Make the substitution

15

√
2v
σ

= u, dv =
(
σ√
2

)n
du.

We get

〈φx, φy〉 = c2
σ exp

(
−2||b||2
σ2

)(
σ√
2

)n ∫
exp(−||u||2)du

= c2
σ exp

(
−2||b||2
σ2

)(
σ
√
π√
2

)n
= exp

(
−2||x− y||2

4σ2

)
= exp

(
−||x− y||2

2σ2

)
= k(x, y),

which completes the proof.

3.1.4 Sequential minimal optimization (SMO)

SMO can be used to solve the dual optimization problem for support vector
machines. I wonder: Can an SMO approach be used to solve a general linear or
quadratic programming problem?

The original SMO paper by John Platt specifically applied the algorithm to
support vector machines. Based on a quick search, I don’t see any applications of
SMO to other fields or problems. I could be missing something, but my answer
so far is that SMO either hasn’t been tried or simply doesn’t offer new value as
a more general approach.

TODO any remaining notes from lecture notes 3

4 On lecture notes 4

The notes in this section are based on lecture notes 4.

4.1 The question of k in the case of finite H

In the case of finite H, I was confused for a moment about the need to include k
in the following line of thinking:

16

http://cs229.stanford.edu/notes/cs229-notes4.pdf

ε(ĥ) ≤ ε̂(ĥ) + γ

≤ ε̂(h∗) + γ

≤ ε(h∗) + 2γ.

This argument is given in the context of

γ =
√

1
2m log 2k

δ
,

where is where the value k = |H| comes in.

My confusion arose because the line of inequalities only involve two particular
hypotheses, ĥ and h∗, so that it seems unnecessary to build the value of γ on top
of a limit for all possibly hypotheses in H. However, I realized that the exact
value of ĥ is in fact dependent on the entire set H, and so the same argument
given with k replaced by 2 would no longer be sound.

4.2 The informal argument for infinite H

In this part of the notes, Ng argues that we may informally consider a theoretically
infinite hypothesis space with p parameters as something like a finite space with
log(k) = O(p) since it can be represented with a single floating-point number
per parameter. However, he also proposed the counterargument that we could
have inefficiently used twice as many variables in a program to represent the
same hypothesis space. I disagree with this counterargument on the basis that
the actual number of hypothesis functions represented is identical, and we can
count k based on this number. To put it slightly more formally, suppose we have
two sets of functions,

H1 = {fp : p ∈ P1} and H2 = {fp : p ∈ P2},

where fp represents a hypothesis function specified by parameters p. To fit
Ng’s example, P1 could be a list of p 64-bit doubles while elements of P2 could
inefficiently hold 2p doubles. However, despite the sets P1 and P2 having different
sizes, the sets H1 and H2 have the same size, thus helping to abstract away
implementation details.

17

	On lecture notes 1
	Gradient descent in general
	Gradient descent on linear regression
	Properties of the trace operator
	Derivation of the normal equation
	A probabilistic motivation for least squares
	Locally weighted linear regression (LWR)
	Logistic regression
	Using Newton's method for logistic regression
	The exponential family
	Generalized linear models
	Gaussian GLM
	Logistic regression GLM

	On lecture notes 2
	Why Gaussian discriminant analysis is like logistic regression
	Naive Bayes

	On lecture notes 3
	Support vector machines
	max min \le min max
	The name of kernels
	The Gaussian kernel
	Sequential minimal optimization (SMO)

	On lecture notes 4
	The question of k in the case of finite \mathcal H
	The informal argument for infinite \mathcal H

