
Introduction to Locality-Sensitive Hashing

Tyler Neylon

521.2018

[Formats: html | pdf | kindle pdf]

Locality-sensitive hashing (LSH) is a set of techniques that dramatically speed
up search-for-neighbors or near-duplication detection on data. These techniques
can be used, for example, to filter out duplicates of scraped web pages at an
impressive speed, or to perform near-constant-time lookups of nearby points
from a geospatial data set.

Let’s take a quick look at other types of hash functions to get a bird’s-eye view of
what counts as a hash function, and how LSH fits into that world. A traditional
use for hash functions is in hash tables. As a reminder, the hash functions used
in a hash table are designed to map a piece of data to an integer that can be
used to look in a particular bucket within the hash table to retrieve or delete
that element. Many containers with string keys, such as JavaScript objects or
Python dictionaries, are based on hash tables. Although hash tables might not
guarantee constant-time lookups, in practice they effectively provide them.

There are other classes of hash functions as well. For example, the SHA-1
cryptographic hash function is designed to be difficult to reverse, which is useful
if you want to store someone’s password as a hashed value. Hash functions like
these are called cryptographic hash functions.

Hash functions typically have these key properties:

• They map some type of input, such as strings or floats, to discrete values,
such as integers.

• They’re designed so that two inputs will result in hash outputs that are
either different or the same based on key properties of the inputs.

Here’s how LSH fits in: Locality-sensitive hash functions are specifically designed
so that hash value collisions are more likely for two input values that are
close together than for inputs that are far apart. Just as there are different
implementations of secure hash functions for different use cases, there are
different implementations of LSH functions for different data types and for
different definitions of being close together. I’ll use the terms neighbors or being
nearby to refer to points that we deem “close enough” together that we’d want
to notice their similarity. In this post, I’ll give a brief overview of the key ideas

1

http://tylerneylon.com/a/lsh1/lsh_post1.html
http://tylerneylon.com/a/lsh1/lsh_post1.pdf
http://tylerneylon.com/a/lsh1/lsh_post1_for_kindle.pdf
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function

Figure 1: A preview of LSH in action. Only hash collisions were used to find the
weights in this image — no pairwise distances were explicitly computed.

2

behind LSH and take a look at a simple example based on an idea called random
projections, which I’ll define in section 2 below.

1 A human example

It will probably be much easier to grasp the main idea behind LSH with an
example you can relate to. This way we can build some intuition before diving
into those random projections that we’ll use in the next section.

Suppose you have a million people from across the United States all standing in
a huge room. It’s your job to get people who live close together to stand in their
own groups. Imagine how much time it would take to walk up to each person,
ask for their street address, map that to a lat/long pair, then write code to find
geographic clusters, and walk up to every person again and tell them how to
find the rest of their cluster. I cringe just thinking about the time complexity.

Here’s a much better way to solve this problem: Write every U.S. zip code on
poster boards and hang those from the ceiling. Then tell everyone to go stand
under the zip code where they live.

Voila! That’s much easier, right? That’s also the main idea behind LSH. We’re
taking an arbitrary data type (a person, who we can think of as a ton of data
including their street address), and mapping that data into a set of discrete
values (zip codes) such that people who live close together probably hash to the
same value. In other words, the clusters (people with the same zip code) are
very likely to be groups of neighbors.

A nice benefit of the zip code approach is that it’s parallel-friendly. Instead of
requiring a center of communication, every person can walk directly to their
destination without further coordination. This is a bit surprising in light of the
fact that the result (clusters of neighbors) is based entirely on the relationships
between the inputs.

Another property of this example is that it is approximate: some people may
live across the street from each other, but happen to have different zip codes, in
which case they would not be clustered together here. As we’ll see below, it’s
also possible for data points to be clustered together even when they’re very
far apart, although a well-designed LSH can at least give some mathematical
evidence that this will be a rare event, and some implementations manage to
guarantee this can never happen.

2 Hashing points with projections

In this section, I’ll explain exactly how a relatively straightforward LSH approach
works, explore some key parameters for this LSH system, and review why this

3

technique is an order of magnitude faster than some other approaches.

Let’s start with an incredibly simple mathematical function that we can treat as
an LSH. Define h1 : R2 → Z for a point x = (x1, x2) ∈ R2 by

h1(x) := bx1c;

that is, h1(x) is the largest integer a for which a ≤ x1. For example,
h1((3.2,−1.2)) = 3.

Let’s suppose we choose points at random by uniformly sampling from the
origin-centered circle C with radius 4:

C := {(x, y) : x2 + y2 ≤ 42}.

Suppose we want to find which of our points in C are close together. We can
estimate this relationship by considering points a, b ∈ C to be clustered together
when h1(a) = h1(b). It will be handy to introduce the notation a ∼ b to indicate
that a and b are in the same cluster. With that notation, we can write our
current hash setup as

a ∼ b ⇐⇒ h1(a) = h1(b).

Figure 2 shows an example of such a clustering.

You can immediately see that some points are far apart yet clustered, while others
are relatively close yet unclustered. There’s also a sense that this particular
hash function h1 was arbitrarily chosen to focus on the x-axis. What would have
happened with the same data if we had used instead h2(x) := bx2c? The result
is figure 3.

While neither clustering alone is amazing, things start to work better if we use
both of them simultaneously. That is, we can redefine our clustering via

a ∼ b ⇐⇒

{
h1(a) = h1(b), and
h2(a) = h2(b).

(1)

Our same example points are shown under this new clustering in figure 4.

This does a much better job of avoiding clusters with points far apart, although,
as we’ll see below, we can still make some improvements.

4

Figure 2: Twenty points chosen randomly in a circle with radius 4. Each point
x is colored based on its hash value h1(x).

Figure 3: The same twenty points as figure 1, except that we’re using the y
values (instead of x values) to determine the hash-based cluster colors this time
around.

5

Figure 4: The same twenty points clustered via two different hashes — one using
bxc, the other using byc. As before, points are colored based on which cluster
they’re in; a cluster is the set of all points who share both their bxc and their
byc values.

2.1 Randomizing our hashes

So far we’ve defined deterministic hash functions. Let’s change that by choosing
a random rotation matrix U (a rotation around the origin) along with a random
offset b ∈ [0, 1). Given such a random U and b, we could define a new hash
function via

h(x) := b(Ux)1 + bc,

where I’m using the notation (vec)1 to indicate the first coordinate of the vector
value vec. (That is, the notation (Ux)1 means the first coordinate of the vector
Ux.) This function is the random projection I referred to earlier.

It may seem a tad arbitrary to use only the first coordinate here rather than
any other, but the fact that we’re taking a random rotation first means that we
have the same set of possibilities, with the same probability distribution, as we
would when pulling out any other single coordinate value.

A key advantage of using randomized hash functions is that any probabilistic
statements we want to make about performance (e.g., “99% of the time this
algorithms will give us the correct answer”) applies equally to all data, as opposed
to applying to some data sets but not to others. As a counterpoint, consider the

6

Figure 5: One hundred random points clustered using four random hash functions
as defined by (2). Points have the same color when all four of their hash values
are the same. Each set of parallel light gray lines delineates the regions with the
same hash value for each of the hi() functions.

way quicksort is typically fast, but ironically uses O(n2) time to sort a pre-sorted
list; this is a case where performance depends on the data, and we’d like to avoid
that. If we were using deterministic hash functions, then someone could choose
the worst-case data for our hash function, and we’d be stuck with that poor
performance (for example, choosing maximally-far apart points that are still
clustered together by our h1 function above). By using randomly chosen hash
functions, we can ensure that any average-case behavior of our hash functions
applies equally well to all data. This same perspective is useful for hash tables
in the form of universal hashing.

Let’s revisit the example points we used above, but now apply some randomized
hash functions. In figure 4, points are clustered if and only if both of their
hash values (from h1(x) and h2(x)) collide. We’ll use that same idea, but this
time choose four rotations U1, . . . , U4 as well as four offsets b1, . . . , b4 to define
h1(), . . . , h4() via

hi(x) := b(Uix)1 + bic. (2)

Figure 5 shows the resulting clustering. This time, there are 100 points since
using more hash functions has effectively made the cluster areas smaller. We
need higher point density to see points that are clustered together now.

7

https://en.wikipedia.org/wiki/Universal_hashing

It’s not obvious that we actually want to use all four of our hash functions. The
issue is that our clusters have become quite small. There are a couple ways
to address this. One is to simply increase the scale of the hash functions; for
example, set:

h̃i(x) := hi(x/s),

where s is a scale factor. In this setup, larger s values will result in larger
clusters.

However, there is something a bit more nuanced we can look at, which is to
allow some adaptability in terms of how many hash collisions we require. In
other words, suppose we have k total hash functions (just above, we had k = 4).
Instead of insisting that all k hash values must match before we say two points
are in the same cluster, we could look at cases where some number j ≤ k of
them matches. To state this mathematically, we would rewrite equation (1) as

a ∼ b ⇐⇒ #{i : hi(a) = hi(b)} ≥ j. (3)

Something interesting happens here, which is that the a ∼ b relationship is no
longer a clustering, but becomes more like adjacency (that is, sharing an edge) in
a graph. The difference is that, in a clustering, if a ∼ b and b ∼ c, then we must
have a ∼ c as well; this is called being transitively closed. Graphs don’t need to
have this property. Similarly, it’s no longer true that our similarity relationship
a ∼ b is transitively closed.

It may help your intuition to see this new definition of a ∼ b in action on the
same 100 points from figure 5. This time, in figure 6, there are twenty random
hashes, and we’re seeing the graphs generated by equation (3) using cutoff values
(values of j) of 6, 7, 8, and 9. The top-left graph in figure 6 has an edge drawn
between two points a and b whenever there are at least 6 hash functions hi()
with hi(a) = hi(b), out of a possible 20 used hash functions.

In fact, we can visualize all possible cutoff values of 6 or higher — these are
values of j in equation (3) — using a single image with weighted edges, as seen
in figure 7. Keep in mind that we haven’t explicitly computed any pairwise
distances to arrive at this data.

There’s another fun way to build intuition for what information our hashes
provide. Let’s visualize regions of the circle where all points have the same
number of hash collisions with a given query point. We can do this by showing
an example query point q, and shading each region based on the number of
hash collisions the region’s points have with q; this is shown in figure 8. Every
point in each shaded region has the same hash values for all the hash functions
used. The first part of figure 8 shows a scaled version of the two-hash system
(using h1() and h2(), similar to figure 4) that we saw before; the second part uses
5 random hashes. The darkest region contains points p where all hash values

8

Figure 6: A set of 100 random points with graph edges drawn according to (3).
There are 20 random hash functions used. The top-left graph uses the cutoff
value j = 6. The remaining three graphs, from top-left to bottom-right, have
cutoff values j = 7, 8, and 9 respectively; this means each graph is a subgraph
(having a subset of the edges) of the previous one.

9

Figure 7: The same 100 random points from figure 6, this time rendered with
edge weights that depend on how many hash collisions are present between any
two points. A black edge represents the maximum of 20 hash collisions; the
lightest edge represents only 6 hash collisions.

collide, so hi(p) = hi(q) for all i. In a lightly shaded region that equation will
only hold true for a smaller subset of the hash functions hi().

The second part of figure 8 (with 5 hashes) shows nicer behavior, and I’ll try
to explain why. Imagine that we were drawing these same images for some
theoretically perfect LSH setup that somehow managed to match point q to
every point p with ||p − q|| ≤ r for some radius r; all other points were not
matched. For that perfect LSH setup, images like figure 8 would show a fixed-size
circle with center at q that moved along with q. With that in mind as the perfect
LSH result, notice that the second part in figure 8 is much closer to this ideal
than the first part. Keep in mind that lookups within the shaded regions are no
longer linear searches through data, but rather the intersection of k hash table
lookups — that is, lookups of nearby points are significantly faster.

It may further help your intuition to see how weighted edges connecting a point
to its neighbors, like those in figure 7, change as a single query point moives.
This is the idea behind figure 9, where weighted edges are drawn between a
moving query point and 100 random points. Notice that the edge weightings
make intuitive sense: they tend to connect strongly to very close neighbors,
weakly to farther neighbors, and not at all to points beyond a certain distance.

10

Figure 8: The first part shows the regions where points would be matched by
either two (dark regions) or just one (lighter shade) hash collision with the
moving query point q. The second part shows the analogous idea for 5 random
hash functions; in the latter case, the lightest shaded region indicates 3 hash
collisions.

11

Figure 9: Edges weighted by how many hash collisions are present between
the moving query point and 100 random points. Darker edges indicate more
hash collisions. This image uses 12 random hashes, and requires at least 6 hash
collisions for an edge to appear.

12

2.2 Choosing values of j

So far, we’ve seen that we can use hash lookups to find nearby neighbors of a
query point, and that using k different randomized hash functions gives us much
more accurate lookups than if we used a single hash function. An interesting
property of figure 7 and figure 9 is that we used different numbers of hash
collisions — via the variable j — to discover different degrees of similarity
between points. In many applications, such as finding near duplicates or close
geospatial points, we only want a binary output, so we have to choose a particular
value for j. Let’s discuss how to choose good values for j.

Suppose k is fixed. How can we decide which value of j is best?

To answer this question, let’s temporarily consider what a perfect function would
do for us. We’ll call this function search(q). In an ideal world this function
returns all points within a fixed distance of the query point. We could visualize
this as an n−dimensional sphere around the query point q. A call to search(q)
ought to return all the indexed points p that live within this sphere.

Let’s move from that idealized algorithm into our fast-but-approximate world of
locality-sensitive hashes. With this approach, there is no exact cutoff distance,
although we keep the property that nearby neighbors are very likely to be in the
returned list and distant points are very likely to be excluded. Since our hash
functions are randomized, we can think of the neighbor relationship p ∼ q as
being a random variable that has a certain probability of being true or false once
all our parameters are fixed (as a reminder, our main parameters are j and k).

Now consider what great performance looks like in the context of this random
variable. Ideally, there is some distance D such that

||p− q|| < D − ε ⇒ P (p ∼ q) > 1− δ;

||p− q|| > D + ε ⇒ P (p ∼ q) < δ.

In other words, this distance D acts like a cutoff for our approximate search
function. Points closer than distance D to query point q are returned, while
points farther are not.

I wrote a Python script to calculate some of these probabilities for the particular
parameters k = 10 and d = 2 (d is the dimensionality of the points), and for
various values of j. In particular, I restricted my input points to certain distances
and measured the probability that they had at least j hash collisions for different
j values. If you’re familiar with conditional probabilities, then this value can be
written as:

P
(
p ∼j q

∣∣ ||p− q|| = D
)
,

13

Figure 10: Intuitively, each box plot represents the distances at which points
p, q will achieve mixed results (sometimes classified as nearby, other times as
not) from our LSH setup. A very short box plot is ideal because it indicates a
smaller range of uncertainty. In other words, a short box plot corresponds to a
setting in which most pairs of points are correctly classified by an LSH system
as nearby or far apart based on their actual distance.

where I’ve written p ∼j q to denote that points p and q have at least j hash
collisions.

Using this Python script, I’ve visualized the collision behavior of p ∼j q for
various j in figure 10. I’ll go into more detail about what each tick on the box
plot indicates, but the intuition is that shorter box plots are better because in
this visualization a shorter box plot indicates a smaller range of uncertainty.

The most interesting element of this graph is that the best value of j appears
to be j = 6. You might have guessed that your best LSH approach is to insist
that all of your random hashes must collide before you consider two points to
be neighbors, but this measurement shows that intuition to be false.

So what exactly did we measure in figure 10? A traditional box plot visualizes
the 25th and 75th percentiles of a set of scalar data points as the boundaries of
the box. Often the median (50th percentile) is also shown within the box, but
we don’t include an analogous mark in figure 10. The “whiskers” at either end
may indicate the minimum and maximum values, or something similar such as
the extreme values after removing outliers.

In our case, we have one box plot for each value of j, and each plot has been
normalized so that the bottom whiskers all align at value 1. (I’ll explain why

14

this is useful in a moment.) The bottom whisker indicates the distance between
p and q so that p ∼j q is true 99% of the time. The bottom of the box is the
relative distance at which p ∼j q is true 75% of the time. Continuing in this
pattern, the box top corresponds to the distance at which we get collisions 25%
of the time, and the top whisker is the distance at which we get collisions 1%
of the time. Since the box plots are all normalized (meaning that the distances
per j value have all been divided through by the smallest distance), it’s easy to
visually see the ratio of each box plot position versus its smallest distance. In
other words, it’s easy to see which distance range is smallest.

Because I love math and precision, I’m going to provide one last definition to
formalize the idea of figure 10. Given a value s ∈ (0, 1), define the distance Ds

as the value satisfying the given equation:

P
(
p ∼j q

∣∣ ||p− q|| = Ds

)
= s,

where p ∼j q means that #{i : hi(p) = hi(q)} ≥ j. Intuitively, if ε is close to
zero, then the distance Dε is large because the probability of p ∼j q is small.
The value of D1/2 is the perfect distance so that p ∼j q happens half of the time,
and D1−ε is a small distance where p ∼j q happens almost all the time. Using
this definition, the four values shown in each box plot of figure 10, from bottom
to top, are:

D.99/D.99, D.75/D.99, D.25/D.99, D.01/D.99.

2.3 Why an LSH is faster

So far we’ve been sticking to 2-dimensional data because that’s easier to visualize
in an article. However, if you think about computing 10 hashes for every 2-
dimensional point in order to find neighbors, it may feel like you’re doing more
work than the simple solution of a linear search through your points. Let’s
review cases where using an LSH is more efficient than other methods of finding
nearby points.

There are two ways an LSH can speed things up: by helping you deal with a
huge number of points, or by helping you deal with points in a high-dimensional
space such as image or video data.

2.3.1 An LSH is fast over many points

If you want to find all points close to a query point q, you could execute a full
linear search. A single-hash LSH can give you results in constant time. That’s
faster.

15

Things are slightly more complex for higher values of j and k. If you keep j = k,
then your LSH result is a simple intersection of k different lists, each list being
the set of hash collision points returned by a given randomized hash function
hi(). Finding this intersection can be sped up by starting with the smallest
of these lists and shrinking it by throwing out points not present in the other
lists. This throwing-out process can be done quickly by using hash-table lookups
to test for inclusion in the point lists, which are basically constant time. The
running time of this approach is essentially O(mk), where m is the length of the
shortest list returned by any of your hash functions hi(). This running time is
very likely to be an order of magnitude faster than linear search.

2.3.2 An LSH is faster for high-dimensional points

There is a beautiful mathematical result called the Johnson-Lindenstrauss lemma
which shows that random projections (which is what we’re using in our hi()
functions) are amazingly good at preserving point-wise distances (Dasgupta and
Gupta 2003). As a result of this, you can often use a much smaller number of
hash functions than your dimensionality d to set up an effective LSH system.

In particular, if you have n points, then you can use on the order of log(n) hash
functions and still achieve good results. With the j = k approach from the last
section, a lookup would require O(m log(n)) time, where m is the length of the
smallest list returned by your hash functions. Even if you wanted to take the
more complex approach of setting j < k, you would still gain a speedup even on
pairwise comparisons. Normally it requires O(d) time to compute the distance
between two points. Using k ≈ log(n) hashes, it would instead take O(log(n))
time to compute the number of hash collisions between two points.

To show how significant this last speedup can be, imagine looking for copyright
violations among movie files that are 1GB each. There have been about 500,000
movies made in the United States so far. With these numbers, we would
require looking at 2 billion numeric values of data to directly compare two
video files, versus looking at about 210 numeric values of data to compare their
LSH values. (The value 210 is twice the expression 8 log(500, 000), which is a
simplified suggested value for k from the Johnson-Lindenstrauss lemma.) The
LSH approach here is about 10 million times faster.

3 Other data types and approaches

This article has focused on numeric, 2-dimensional data because it’s easier to
visualize. Locality-sensitive hashes can certainly be used for many data types
including strings, sets, or high-dimensional vectors.

Yet another ingredient to throw into the mix here is a set of techniques to boost
performance tht treat an LSH as a black box. My favorite approach here is to

16

https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma

simply perform multiple lookups on a hash system, each time using q + ε as an
input, where q is your query value, and ε is a random variable centered at zero
(Panigrahy 2006).

There’s a lot more that can be said about LSH techniques. If there is reader
interest, I may write a follow-up article explaining the details of min-wise hashing,
which is a fun case that’s simultaneously good at quickly finding nearby sets as
well as nearby strings (Broder et al. 2000).

Hi! I hope you enjoyed my article. As you can see, I love building systems
that get the most out of data. If you’d like to work together on a machine
learning project, I’d love to hear from you. My company, Unbox Research, has a
small team of talented ML engineers. We specialize in helping content platforms
make more intelligent use of their data, which translates to algorithmic text and
image comprehension as well as driving user engagement through discovery or
personalization. Email me at tyler@unboxresearch.com.

References

Broder, Andrei Z, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.
2000. “Min-Wise Independent Permutations.” Journal of Computer and System
Sciences 60 (3). Elsevier: 630–59.

Dasgupta, Sanjoy, and Anupam Gupta. 2003. “An Elementary Proof of a
Theorem of Johnson and Lindenstrauss.” Random Structures & Algorithms 22
(1). Wiley Online Library: 60–65.

Panigrahy, Rina. 2006. “Entropy Based Nearest Neighbor Search in High
Dimensions.” In Proceedings of the Seventeenth Annual Acm-Siam Symposium
on Discrete Algorithm, 1186–95. Society for Industrial; Applied Mathematics.

17

mailto:tyler@unboxresearch.com

	A human example
	Hashing points with projections
	Randomizing our hashes
	Choosing values of j
	Why an LSH is faster
	An LSH is fast over many points
	An LSH is faster for high-dimensional points

	Other data types and approaches
	References

