
CS 229 Homework

Tyler Neylon

345.2016

These are solutions to the most recent problems posted for Stanford’s CS 229
course, as of June 2016. I’m not sure if this course re-uses old problems, but
please don’t copy the answers if so. This document is also available as a pdf.

1 Problem set 1

1.1 Logistic regression

1.1.1 Part (a)

The problem is to compute the Hessian matrix H for the function

J(θ) = − 1
m

m∑
i=1

log(g(y(i)x(i))),

where g(z) is the logistic function, and to show that H is positive semi-definite;
specifically, that zTHz ≥ 0 for any vector z.

We’ll use the fact that g′(z) = g(z)(1 − g(z)). We’ll also note that since all
relevant operations are linear, it will suffice to ignore the summation over i in
the definition of J. I’ll use the notation ∂j for ∂

∂θj
, and introduce t for yθTx.

Then

−∂j(mJ) = g(t)(1− g(t))
g(t) xjy = xjy(1− g(t)).

Next

−∂k∂j(mJ) = xjy
(
− g(t)(1− g(t))

)
xky,

so that
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∂jk(mJ) = xjxky
2α,

where α = g(t)(1− g(t)) > 0.

Thus we can use repeated-index summation notation to arrive at

zTHz = zihijzj = (αy2)(zixixjzj) = (αy2)(xT z)2 ≥ 0.

This completes this part of the problem.

1.1.2 Part (b)

Here is a matlab script to solve this part of the problem:

% problem1_1b.m
%
% Run Newton's method on a given cost function for a logistic
% regression setup.
%

printf('Running problem1_1b.m\n');

% Be able to compute J.
function val = J(Z, theta)

[m, _] = size(Z);
g = 1 ./ (1 + exp(Z * theta));
val = -sum(log(g)) / m;

end

% Setup.
X = load('logistic_x.txt');
[m, n] = size(X);
X = [ones(m, 1) X];
Y = load('logistic_y.txt');
Z = diag(Y) * X;

% Initialize the parameters to learn.
old_theta = ones(n + 1, 1);
theta = zeros(n + 1, 1);
i = 1; % i = iteration number.

% Perform Newton's method.
while norm(old_theta - theta) > 1e-5

printf('J = %g\n', J(Z, theta));
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printf('theta:\n');
disp(theta);
printf('Running iteration %d\n', i);

g = 1 ./ (1 + exp(Z * theta));
f = (1 - g);
alpha = f .* g;
A = diag(alpha);
H = Z' * A * Z / m;
nabla = Z' * f / m;
old_theta = theta;
theta = theta - inv(H) * nabla;

i++;
end

% Show and save output.
printf('Final theta:\n');
disp(theta);
save('theta.mat', 'theta');

Because I have copious free time, I also wrote a Python version. Also because
I’m learning numpy and would prefer to consistently use a language that I know
can produce decent-looking graphs. Here is the Python script:

#!/usr/bin/env python

import numpy as np
from numpy import linalg as la

# Define the J function.
def J(Z, theta):

m, _ = Z.shape
g = 1 / (1 + np.exp(Z.dot(theta)))
return -sum(np.log(g)) / m

# Load data.
X = np.loadtxt('logistic_x.txt')
m, n = X.shape
X = np.insert(X, 0, 1, axis=1) # Prefix an all-1 column.
Y = np.loadtxt('logistic_y.txt')
Z = np.diag(Y).dot(X);

# Initialize the learning parameters.
old_theta = np.ones((n + 1,))
theta = np.zeros((n + 1,))
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i = 1

# Perform Newton's method.
while np.linalg.norm(old_theta - theta) > 1e-5:

# Print progress.
print('J = {}'.format(J(Z, theta)))
print('theta = {}'.format(theta))
print('Running iteration {}'.format(i))

# Update theta.
g = 1 / (1 + np.exp(Z.dot(theta)))
f = 1 - g
alpha = (f * g).flatten()
H = (Z.T * alpha).dot(Z) / m
nabla = Z.T.dot(f) / m
old_theta = theta
theta = theta - la.inv(H).dot(nabla)

# Update i = the iteration counter.
i += 1

# Print and save the final value.
print('Final theta = {}'.format(theta))
np.savetxt('theta.txt', theta)

The final value of θ that I arrived at is

θ = (2.62051,−0.76037,−1.17195).

The first value θ0 represents the constant term, so that the final model is given
by

y = g(2.62− 0.76x1 − 1.17x2).

1.1.3 Part (c)

1.2 Poisson regression and the exponential family

1.2.1 Part (a)

Write the Poisson distribution as an exponential family:

p(y; η) = b(y) exp
(
ηTT (y)− a(η)

)
,
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Figure 1: The data points given for problem 1.1 along with the decision boundary
learned by logistic regression as executed by Newton’s method.
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where

p(y;λ) = e−λλy

y! .

This can be done via

η = log(λ),
a(η) = eη = λ,
b(y) = 1/y!, and
T (y) = y.

1.2.2 Part (b)

As is usual with generalized linear models, we’ll let η = θTx. The canonical
response function is then given by

g(η) = E[y; η] = λ = eη = eθ
T x.

1.2.3 Part (c)

Based on the last part, I’ll define the hypothesis function h via h(x) = eθ
T x.

For a single data point (x, y), let `(θ) = log(p(y|x)) = log( 1
y! ) + (yθTx− eθT x).

Then

∂

∂θj
`(θ) = yxj − xjeθ

T x = xj(y − eθ
T x).

So stochastic gradient ascent for a single point (x, y) would use the update rule

θ := θ + αx(y − h(x)).

1.2.4 Part (d)

In section 1.10 of my notes — the section on generalized linear models — I
derived the update rule:

θ := θ + α
(
T (y)− a′(θTx)

)
x.
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The missing piece is to proof that h(x) = E[y] = a′(η), which we’ll do next.
We’ll work in the context of T (y) = y, as given by the problem statement. Notice
that, for any η,

∫
p(y)dy =

∫
b(y) exp(ηT y − a(η))dy = 1.

Since this identity is true for all values of η, we can take ∂
∂η of it to arrive at the

value 0:

0 = ∂
∂η

∫
p(y)dy

=
∫

∂
∂η b(y) exp(ηT y − a(η))dy

=
∫
b(y)(y − a′(η)) exp(ηT y − a(η))dy

=
∫
yp(y)dy − a′(η)

∫
p(y)dy

= E[y]− a′(η).

Thus we can conclude that E[y] = a′(η) = a′(θTx), which completes the solution.

1.3 Gaussian discriminant analysis

1.3.1 Part (a)

This problem is to show that a two-class GDA solution effectively provides a
model that takes the form of a logistic function, similar to logistic regression.
This is something I already did in section 2.1 of my notes.

1.3.2 Parts (b) and (c)

These parts ask to derive the maximum likelihood estimates of φ, µ0, µ1, and Σ
for GDA. Part (b) is a special case of part (c), so I’ll just do part (c).

Some lemmas

It will be useful to know a couple vector- and matrix-oriented calculus facts
which I’ll briefly derive here.

First I’ll show that, given column vectors a and b, and symmetric matrix C,

∇b[(a− b)TC(a− b)] = −2C(a− b). (1)

We can derive this by looking at the kth coordinate of the gradient. Let x =
(a− b)TC(a− b). Then, using repeated index summation notation,
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x = (ai − bi)cij(aj − bj)
⇒ [∇b]kx = −ckj(aj − bj)− (ai − bi)cik

= −2C(a− b).

Next I’ll show that

∂

∂C
(a− b)TC(a− b) = (a− b)(a− b)T . (2)

This follows since

(a− b)TC(a− b) = (ai − bi)cij(aj − bj),

so that

∂

∂cij
(a− b)TC(a− b) = (ai − bi)(aj − bj).

In other words, the ijth entry of the matrix derivative is exactly the ijth entry
of the matrix (a− b)(a− b)T .

Finally, I’ll mention that, when a matrix A is invertibe,

d

dA
|A| = |A|A−T . (3)

This can be seen by considering that the ijth entry of A−1 can be written as

(A−1)ij = ((−1)i+jMji)/|A|, (4)

where Mij denotes the determinant of the minor of A achieved by removing
the ith row and jth column. Next, consider the expression for A as a sum of
products σ(π)

∏
aiπ(i) over all permutations π : [n]→ [n] where σ(π) is the sign

of permutation π (reference). Based on that definition of a determinant, it can
be derived that

∂

∂aij
|A| = (−1)i+jMij .

Combine this last result with (4) to arrive at (3).

The solution

We’re now ready to derive the equations for the GDA parameters based on
maximum likelihood estimation.
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The log likelihood function is

` =
∑
i

log(p(x|y)) + log(p(y)).

φ

In this section I’ll start to use the notation [Pred(x)] for the indicator function
of a boolean predicate Pred(x) :

[Pred(x)] :=
{

1 if Pred(x) is true, and
0 otherwise.

This is the notation that Knuth uses, and I prefer it to Ng’s notation 1{Pred(x)}.

Treating p(y) as φy(1− φ)1−y, set ∂
∂φ of ` to 0; the result is

∑
i

∂

∂φ

(
y log φ+ (1− y) log(1− φ)

)
=
∑
i

y

φ
− 1− y

1− φ = 0

⇒
∑
i

y(1− φ)− (1− y)φ = 0

⇒ m1 −m1φ = m0φ,

where mj =
∑
i[y(i) = j], and I’m treating the possible y values as 0 or 1. Then

m1 = φ(m0 +m1) ⇒ φ = m1

m
,

using that m = m0 +m1.

µj

∂

∂µj
` = ∂

∂µj

∑
y=j
−1

2(x− µj)TΣ−1(x− µj)

We can use (1) to see that this is the same as

∑
y=j

Σ−1(x− µj).

Setting ∂
∂µj

` = 0, and noticing that Σ−1 must be nonsingular as it’s an inverse,
we get
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∑
y=j

x =
∑
y=j

µj ,

resulting in

∑
y=j

x = mjµj ⇒ µj = 1
mj

∑
y=j

x.

Σ

To get an equation for Σ, we’ll actually maximize ` with respect to its inverse
Σ−1. This works because there is a bijection between all possible values of Σ−1

and of Σ under the constraint that Σ is invertible, which is required for GDA to
make sense. Thus the value of Σ−1 which maximizes ` uniquely identifies the
value of Σ which maximizes `.

∂

∂Σ−1 ` =
∑
i

∂

∂Σ−1

(
C + 1

2 log |Σ−1| − 1
2(x− µy)TΣ−1(x− µy)

)
.

Use (2) to see that this is the same as

∑
i

|Σ−1|ΣT

|Σ−1|
− 1

2(x− µy)(x− µy)T .

Set this value to 0 to arrive at

∑
i

ΣT =
∑
i

(x− µy)(x− µy)T ⇒ ΣT = 1
m

∑
i

(x− µy)(x− µy)T .

Since the expression on the right must give a symmetric matrix, this same
expression also gives the value for Σ itself.

1.4 Linear invariance of optimization algorithms

1.4.1 Part (a)

This problem is to show that Newton’s method is invariant to linear reparametriza-
tions.

Specifically, suppose x(0) = z(0) = 0, that matrix A is invertible, and that
g(z) = f(Az). Our goal is to show that if the sequence x(1), x(2), . . . results from
Newton’s method applied to f , then the corresponding sequence z(1), z(2), . . .
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resulting from Newton’s method applied to g obeys the equation x(i) = Az(i) for
all i, so that the two versions of Newton’s method are in a sense doing the exact
same work. We’ll think of f consistently as a function of x, and g as a function
of z.

Start with

[
∇zg

]
i

= ∂f

∂zi
= ∂f

∂xj

∂xj
∂zi

= ∂f

∂xj
aji,

from which it follows that

∇g = AT∇f.

Next, introduce the variables H as the Hessian of f, and P as the Hessian of g.
Then

pij = ∂

∂zi

∂f

∂zj
= ∂

∂zi

(
∂f

∂xk
akj

)
=
(
∂

∂zi

∂f

∂xk

)
akj

=
(

∂

∂x`

∂x`
∂zi

∂f

∂xk

)
akj =

(
a`i

∂2f

∂x`∂xk

)
akj = a`ih`kakj .

We can summarize this as

P = ATHA.

Newton’s method in this context can be expressed by the two equations

x(i+1) = x(i) −H−1(x(i))∇f(x(i)), and
z(i+1) = z(i) − P−1(z(i))∇g(z(i))

= z(i) − (ATHA)−1(x(i))AT∇f(x(i)).

We’ll show by induction on i that x(i) = Az(i) for all i. The base case for i = 0
is true by definition. For the inductive step, assume that x(i) = Az(i), and use
the above equations to see that

Az(i+1) = Az(i) −AA−1H(x(i))A−TAT∇f(x(i))
= x(i) −H(x(i))∇f(x(i))
= x(i+1),

which completes this part of the problem.
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1.4.2 Part (b)

Gradient descent is not invariant to linear reparametrizations. The update
equation for f is

x(i+1) = x(i) − α∇f,

and for g is

z(i+1) = z(i) − α∇g = z(i) − αAT∇f.

In order for Az(i+1) = x(i+1), we would need

A(z(i) − αAT∇f) = Az(i) −Aα∇f ⇔ AAT∇f = A∇f,

but this is only guaranteed when A is unitary.

1.5 Regression for denoising quasar spectra

1.5.1 Part (a)

i.

Let the ith row ofX be x(i). Then (Xθ)i = 〈x(i), θ〉 and (Xθ−y)i = 〈x(i), θ〉−y(i).

Let the ith diagonal element ofW be w(i)

2 . Then ((Xθ−y)TW )i = w(i)

2 (〈x(i), θ〉−
y(i)〉) so that

J(θ) = (Xθ − y)TW (Xθ − y) =
∑
i

w(i)

2 (〈x(i), θ〉 − y(i))2.

This gives us a nice way to express J(θ) in terms of matrices and vectors, as the
problem requested.

ii.

This problem is to explicitly solve for ∇θJ(θ) = 0 for the function J(θ) given in
the last part.

I’ll begin by defining the general notation

〈a, b〉W := aTWb.

This is similar to a standard inner product when both a and b are column vectors,
but the notation still works when a or b are matrices of appropriate dimensions.
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Let’s find some gradient formulas for ∇θ〈a, b〉W in the case that a, b depend on
θ but W doesn’t. It will be useful to keep in mind that

〈a, b〉W = aiwijbj .

Then

∂

∂θk
(aiwijbj) = a′iwijbj + aiwijb

′
j ,

where x′ denotes ∂x
∂θk

.

Define the matrix A′ so that it has kth column ∂
∂θk

a, and similarly for B′ from
b. Then

∂

∂θk
〈a, b〉W = 〈 ∂a

∂θk
, b〉W + 〈a, ∂b

∂θk
〉W ,

which we can summarize as

∇θ〈a, b〉W = 〈A′, b〉W + 〈a,B′〉TW .

In the special case that W is symmetric, we also have

∇θ〈z, z〉W = 〈Z ′, z〉W + 〈z, Z ′〉TW
= 〈Z ′, z〉W + (zTWZ ′)T

= 〈Z ′, z〉W + Z ′TWz

= 2〈Z ′, z〉W ,

which can be summarized as

∇θ〈z, z〉W = 2〈Z ′, z〉W .

To get back to the actual problem, notice that, by letting z = Xθ − y, we can
write J = 〈z, z〉W .

Then
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∇J = 2〈Z ′, z〉W
= 2Z ′TWz

= 2XTWz

= 2XTW (Xθ − y) = 0
⇒ XTWXθ = XTWy

⇒ θ = (XTWX)−1XTWy = (〈X,X〉W )−1〈X, y〉W ,

which is the closed-form expression the problem asked for.

iii.

In this problem, we suppose that

(y(i) | x(i)) ∼ N (θTx(i), σ(i)).

Our goal is to show that maximizing the log likelihood in this scenario is the
same as an application of weighted linear regression as seen in the previous two
parts.

Begin by writing that

`(θ) =
∑
i

log
(
ci exp

(
− (y(i) − θTx(i))2

2(σ(i))2

))
=
∑
i

log(ci)−
(y(i) − θTx(i))2

2(σ(i))2 ,

where ci is a value independent of θ, so that we may safely ignore it when taking
∇θ.

From this point on I won’t write the i index on variables. I hope it’s clear from
context. Then

∇θ` =
∑
i

2(y − θTx)x
2σ2 ,

so that ∇` = 0 when

∑
i

1
σ2 (y − θTx)x = 0.

Let the kth diagonal element of W be 1/(σ(k))2, and define matrix X so that
its ith row is x(i). Also let ~y denote the column vector with ith coordinate y(i).
Then
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∑
i

1
σ2 (y − θTx)x = XTW (~y −Xθ).

This can be confirmed by seeing that the column vector m = W (~y−Xθ) has ith

coordinate 1
(σ(i))2 (y(i) − θTx(i)), and seeing the product XTm as

∑
i x

(i)mi.

But this last expression matches what we found in part ii of this problem,
showing that solving this maximum likelihood estimate is effectively the same as
solving a weighted linear regression problem.

1.5.2 Part (b)

i

I interpret this problem as applying linear regression to the first row of the given
data file as a function of the wavelengths. This is the Python code I used:

#!/usr/bin/env python
"""Problem 1_5b_i.py

Graph the first row of data and a linear regression for
this data.
"""

import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as la

# Load the data.
all_data = np.loadtxt('quasar_train.csv', delimiter=',')
lambdas = all_data[0, :]
data = all_data[1:, :]
row1 = data[0, :]

# Run least squares.
A = np.vstack((lambdas, np.ones(len(lambdas)))).T
m, c = la.lstsq(A, row1)[0]

# Plot the data and line.
plt.plot(lambdas, row1, 'o', label='spectra data',

markersize=2)
plt.plot(lambdas, m * lambdas + c, 'r', label='fitted line')
plt.title('Problem 1.5(b)i')
plt.legend()
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plt.show()

The code generated this image:

Figure 2: The first row of quasar spectra data plotted against wavelengths along
with the line of best fit.

The line found had a slope of -0.000981122145459 with an intercept value of
2.5133990556. In other words, the spectra value v is approximated via the
equation

v = 2.5134− 9.8112e−4λ,

where λ is the wavelength.

ii

Here is the code:

#!/usr/bin/env python
"""Problem 1_5b_ii.py

Graph the first row of data along with a locally weighted
linear regression.
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"""

import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as la

# A function to solve locally weighted linear regression for
# given matrices X and W.
def lwlr_theta(X, W, y):

A = X.T.dot(W)
B = A.dot(X)
return la.inv(B).dot(A).dot(y)

def lwlr_at_pt(all_x, y, query_x):
X = np.vstack((np.ones(len(all_x)), all_x)).T
x = query_x
tau = 5
denom = 2.0 * tau ** 2
w = np.exp([-(x - xi) ** 2/denom for xi in all_x])
W = np.diag(w)
theta = lwlr_theta(X, W, y)
return theta[0] + theta[1] * query_x

def main():
# Load the data.
all_data = np.loadtxt('quasar_train.csv', delimiter=',')
lambdas = all_data[0, :]
data = all_data[1:, :]
row1 = data[0, :]

# Compute the LWLR curve at each lambda.
curve = [lwlr_at_pt(lambdas, row1, x) for x in lambdas]

# Plot the data and line.
plt.plot(lambdas, row1, 'o', label='spectra data',

markersize=2)
plt.plot(lambdas, curve, 'r', label='LWLR curve')
plt.title('Problem 1.5(b)ii')
plt.legend()
plt.show()

if __name__ == '__main__': main()

Here is the graph generated:

iii
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Figure 3: The first row of quasar spectra data plotted against wavelengths along
with the curve resulting from a locally weighted linear regression with τ = 5.
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In this problem, we repeat part ii, except with the τ values 1, 10, 100, and 1000.

The code is similar to the above. Here is the graph generated:

Figure 4: The first row of quasar spectra data plotted against wavelengths
along with the curves resulting from locally weighted linear regressions with
τ = 1, 10, 100, and 1000.

As τ increases, the resulting LWLR curve becomes smoother. Smaller τ values
allow for more variation at a local level, thus fitting the data more closely, but
also enabling wild variations due to noise.
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