
Notes on Permutations: Cycles and Transpositions

Tyler Neylon

332.2022

[Formats: html | pdf]

This is a collection of notes about permutations — all the different ways of
ordering a set of distinct elements. In group theory, the group of permutations
of size n is denoted Sn. For example:

S2 12 21

S3 123 132 213 231 312 321

S4 1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

You can think of a single permutation as either a particular ordering of the
integers 1 through n, or, equivalently, as a 1-1 and onto mapping f : {1, . . . , n} →
{1, . . . , n}. There’s a natural way to write such a mapping f , which is to list
out f(1), f(2), . . . , f(n) as a string; you can consider the lists of elements of
S2, S3, S4 above to be in this string notation. By default, this article will view
permutations as mappings.

This article covers the following independent observations about permutations:

• I’ll introduce the idea of a cut-merge operation, and show how this corre-
sponds to a transposition; a transposition is a permutation that exchanges
two elements of a set, and changes no others. Given the set {1, 2, 3,
4, 5}, the swap of 2 and 5 would be a transposition; I might write this
permutation as 15342.

• Permutations can be split into two kinds: odd permutations and even
permutations. Just as odd + even = odd when it comes to integer addition,
the analogous rules hold for permutations under composition. For example,
if I apply an odd permutation, and then apply an even permutation after
that, the result of the combined permutations is itself an odd permutation
(and this analogy holds for all combinations of odd/even). I’ll present a
simple proof of this breakdown using cut-merge operations.

1

http://tylerneylon.com/a/perms1/perms1.html
http://tylerneylon.com/a/perms1/perms1.pdf

• I’ll discuss a generalization of the parity (even-ness or odd-ness) of a
permutation π that I call the magnitude m(π) of the permutation.

• I’ll define the cycle structure cs(π), which captures the sizes of cycles in
the permutation π; and I’ll show that cs(a · b) = cs(b · a) for any two
permutations a, b.

• I’ll show that the magnitude m(·) acts like a norm on the group Sn, and
that it can define a coherent distance function dist(·, ·) on Sn.

When I say these are independent observations, I mean that these ideas are new
to me. I have not tried much to check if they are new to the world altogether —
in all likelihood, many of these ideas have been discovered by others before me.
Still, I think they’re fun ideas worth sharing.

1 Cycle Notation
Any permutation is a specific ordering of a set of distinct elements. This article
focuses on finite permutations, and I’ll generally use the variable n to denote
the size of the set being permuted. It’s simple and traditional to think of a
permutation as a bijection (a 1-1 and onto mapping) of the first n integers —
for example, here’s a permutation of the set {1, 2, . . . , 8} in string notation:

π = 15273648. (1)

Despite the possible confusion with the constant π = 3.141 . . ., it’s also traditional
to use the variable π for a permutation, as (clearly) π stands for “πermutation.”

There are many fun ways to denote or think about a particular permutation. For
example, given π as in (1), we could think of it as the sequence π1 = 1, π2 = 5,
. . ., π8 = 8. We could also think of it as a function π : [n] → [n], using [n] to
denote the integers {1, 2, . . . , n}.

This article uses a particular notation for permutations called cycle notation:
the idea for cycle notation is to write out a string of integers in [n] with the
interpretation that any consecutive pair ij indicates that i is mapped to j, and
any i at the end of a parenthesized group maps to j at the start of the same
group. Our permutation from (1) looks like this in cycle notation:

π = (2 5 3)(4 7)

because π(2) = 5, π(5) = 3, and π(4) = 7. Each sequence in parentheses wraps
around, so π(3) = 2 and π(7) = 4. Thus each parenthesized sequence is a cycle.
It is understood that any omitted elements are mapped to themselves; since
π(1) = 1, we don’t need to include 1 in the cycle notation for π.

Examples:

2

For n = 5, (1 3) denotes 32145.
For n = 5, (2 3)(4 5) denotes 13254.
For n = 8, (1 5 2)(3 7)(4 8 6) denotes 51782436.

You could write the same permutation many ways in cycle notation; for example:

π = (7 4)(5 3 2) = (3 2 5)(7 4) = (2 5 3)(4 7).

Among those choices, I consider the last one to be standard because it’s lexico-
graphically first.

2 The Cut-Merge Operation
Now I’ll introduce an operation that acts naturally on the cycle notation of a
permutation. Intuitively, a merge is an operation that combines two cycles by
concatenating their cycle notation. When two elements — say 3 and 5 — are in
different cycles, then I’ll write π ∗ (3 5) to mean “merge, in π, the cycles starting
with 3 and 5.”

An example:

(1 2)(3 4)(5 6) ∗ (3 5) = (1 2)(3 4 5 6).

What if 3 and 5 were already in the same cycle? Then π ∗ (3 5) takes on the
meaning “cut apart the subcycles starting with 3 and 5:”

(1 2)(3 4 5 6) ∗ (3 5) = (1 2)(3 4)(5 6)

or

(1 2 3 4 5) ∗ (3 5) = (3 4)(5 1 2);

this last example might be easier to see when you keep in mind that

(1 2 3 4 5) = (3 4 5 1 2).

Now I’m ready to more carefully define the cut-merge operation ∗(x y). In
the definition below, I’ll write (x···) to denote the cycle starting with x; and,
analogously, I’ll write (x··· y···) to indicate a cycle containing both x and y,
possibly with other elements indicated by the dots.

3

Definition The cut-merge operation ∗(x y) operates on a permutation π
via

π ∗ (x y) =
{

(x··· y···) if π = (x···)(y···) or,
(x···)(y···) if π = (x··· y···).

If there are any other cycles (ones without x or y), then they are unaffected by
the (x y) operation.

The operation cuts a cycle if x and y are in the same cycle; otherwise it merges
the cycles of x and y. A shorthand for the definition is:

(x··· y···) ←→
∗(x y)

(x···)(y···).

Note that a merge can still operate on elements not explicitly written in cycle
notation. If I write e to denote the identity permutation, with πi = i ∀i, then

e ∗ (x y) = (x y).

Similarly,

(1 2) ∗ (2 3) = (2 1 3)

because, setting x = 2 and y = 3, we think of the left side as (x···)(y···) = (21)(3).

Observation 1 The cut-merge operation π ∗ (x y) is simply π composed
with the permutation (x y).

To state this observation again, I’ll introduce the notation ρab() for the function
that swaps input elements a and b, but otherwise acts as the identity function.
Thus ρab() is the function version of the transposition that we would write in
cycle notation as (a b). With ρab() defined, I can express observation 1 like so:

(π ∗ (x y)) (i) = ρxy(π(i)), (2)

where I’m thinking of permutations as functions, so the (i) sub-expression is
evaluating the function on input i ∈ {1, 2, . . . , n}.

I could stop to carefully prove observation 1, but I think you’ll have more fun if
you convince yourself it’s true on your own.

Why did I bother to define the cut-merge operation when I could have just
started with (2) instead? Because the perspective of the definition I’m using will
let us make some interesting further observations, as we’ll see below.

4

3 The Magnitude and Parity of a Permutation
Definition The magnitude of a permutation π is given by

m(π) := #(cycle elements of π)−#(cycles of π),

where a cycle element of π is any element written in the cycle notation of π,
and where we similarly count the cycles of π based on how many cycles are
written in π’s cycle notation.

For example, the permutation π = (2 5 3)(4 7) has 5 cycle elements and 2 cycles,
so m(π) = 3.

Notice that m(π) remains the same if we include singleton cycles in our cycle
notation. It would be nonstandard to include singletons, but it would still
be a consistent notation. Continuing our example, π = (1)(2 5 3)(4 7)(6) ⇒
m(π) = 7− 4 = 3, as before. This leads to:

Observation 2
m(π) = n−#(orbits),

where an orbit is either a cycle with multiple elements, or a singleton, which is
an element i : π(i) = i.

Let’s see why the definition of m(π) is interesting.

Observation 3
(i). Every merge increases m(π) by 1.
(ii). Every cut decreases m(π) by 1.
(iii). m(π) is the least number of cut-merge operations which can reach π from

the identity permutation e.

Parts (i) and (ii) are easy to check.

Part (iii) is clear from the cut-merge perspective in that (a) we cannot build π
in fewer operations, based on (i); and (b) we can indeed build π in m(π) merges
by appending together the appropriate singletons one at a time. For example:

(2 5 3)(4 7) = e ∗ (2 5) ∗ (2 3) ∗ (4 7). (3)

Starting now, I’ll write simply στ or σ · τ to denote the composition of permuta-
tions σ and τ . Using observation 1, we can see that the construction pattern
used in (3) must work for any cycle that we want to write as a composition of
transpositions:

(x1 x2 · · ·xk) = (x1 x2)(x1 x3) · · · (x1 xk).

In other words, every permutation is the product of m(π) transpositions, and
cannot be the product of fewer. It could be the product of more, though:

5

(1 2 3) = (1 2)(1 3)(8 9)(8 9).

Now we’re ready to define an interesting way to classify all permutations into
two different types:

Definition A permutation π is odd if m(π) is odd, and even otherwise.

As soon as we call something even or odd, we expect some kind of behavior like
this to happen:

even + even = even
odd + even = odd
odd + odd = even.

(4)

It turns out that these rules do indeed hold true in the sense that, for example,
if we compose an odd permutation with another odd permutation, the result is
an even permutation. Next I’ll explain why the intuitive identities of (4) are
true for permutations.

The key to the proof is to see that, for any sequence of transpositions t1, t2, . . . , tk:

m(t1t2 · · · tk) is even iff k is even. (5)

This fact follows from observation 3. In more detail: Certainly m(e) = 0 (recall
that e is the identity permutation); this corresponds to k = 0 in (5), an empty
product. Now for larger values of k: If π = t1t2 · · · tk−1 and we compose π with
tk (move from π to π · tk), then the parity (even/odd-ness) of the permutation
switches because m(π · tk) = m(π)± 1 by observation 3. So π · tk is even iff π is
odd. This is enough to complete a proof of (5) by induction on k.

It will be useful to define the sign function of a permutation π like so:

sign(π) :=
{

1 if π is even, and
−1 if π is odd.

Notice that sign(π) = (−1)m(π).

When we use this sign function, we’re essentially moving from an additive view of
even/odd-ness and into a multiplicative view — but the two views are equivalent.
For example, the equation

even + odd = odd

becomes
(−1)even(−1)odd = (−1)odd.

The general equation (−1)a(−1)b = (−1)a+b provides the equivalence.

6

We can now state the idea of (4) both more formally and more succinctly.

For any two permutations σ and τ ,

sign(σ · τ) = sign(σ) · sign(τ). (6)

Let’s see why (6) is true. Let k = m(σ) and k′ = m(τ). Then, using observation
3(iii), we can find transpositions (ti)k

1 and (t′
i)k′

1 so that

σ = t1 · · · tk

τ = t′
1 · · · t′

k′ .

Then

sign(σ · τ) = (−1)m(στ) by def’n of sign

= (−1)m(t1···tk·t′
1···t′

k′) by def’n of ti and t′
i

= (−1)k+k′
by (5)

= (−1)k(−1)k′

= sign(σ)sign(τ).

This completes the proof of (6). And (6) expresses the same idea as (4), so that
we have now justified all of those formulae.

Moving back to group theory: Notice that if σ and τ are both even permutations,
then so is στ . In other words, the subset of even permutations is closed under
composition, so that they form a subgroup of Sn. This subgroup is called the
alternating group. Since odd permutations are not closed under composition,
they don’t form a subgroup.

4 Previous Approaches to Permutation Parity
I like the cut-merge proof of (6) because it provides an intuition for why parity
makes sense for permutations. In a nutshell, every permutation is a sequence
of transpositions (cut-merges), and every transposition is a flip of the parity
because the magnitude must either increase or decrease by 1.

Here’s a sketch of the intuitive paths we’ve crossed:

transpositions ←→ cut-merges ←→ changes to cycles

↕

changes to parity ←→ changes to m(π)

I’ll contrast the proof above of (6) with two other approaches.

7

4.1 Herstein’s Proof
In his book Topics in Algebra, I.N. Herstein uses the Vandermonde polynomial:

p(x1, . . . , xn) :=
∏
i<j

(xi − xj).

Given a permutation π, we can now define

π(p(x1, . . . , xn)) := p(xπ1 , . . . , xπn
).

The polynomial π(p) is still a product of (xi − xj) for all i ̸= j, but the sign of
the polynomial may change. For example, when n = 3, and π = (1 2):

p(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)

π(p) = (x2 − x1)(x2 − x3)(x1 − x3)

= −p.

Since π(p) = ±p for any π, we can (re)define

sign(π) := π(p)/p ∈ {−1, +1}. (7)

(Temporarily forget our original definition of sign(π). We’ll re-prove (6), and
because our new and old sign() functions are the same on e and on transpositions,
it will follow that they are in fact the same function.)

Notice that

π(−p) = −π(p) (8)

based on the definition of π(p).

This means that, for any two permutations σ and τ ,

sign(στ) · p = τ(σ(p)) by (7)
= τ(sign(σ) · p) by (7)
= sign(σ) · τ(p) by (8)
= sign(σ) · sign(τ) · p.

In summary, sign(σ ·τ) = sign(σ) ·σ(τ), which confirms (6) for this new definition
of sign(). This proof provides less insight than the cut-merge approach as to why
(6) is true — into what is going on behind the scenes to make things click.

8

4.2 Artin’s Proof
The other approach I’ll consider is from the book Algebra by Michael Artin. This
second alternative proof works by translating permutations into the language of
linear algebra, and relies upon properties of the determinant of a matrix. On
the off chance that you’re not fluent in properties of determinants, you can skim
or skip this section and safely resume reading afterwards (the remainder of this
note does not rely on linear algebra). I’m not a huge fan of this proof because
it’s so easy to get lost in the details of tracking the relationship between vector
coordinates and how permutations act on them. I’ll break the proof down into
small steps to walk you through the dance of indices.

I’ll use the variable ei to denote the column vector of length n:

ei =

0
0
...
1←− ith place.
...
0
0

For example, if n = 3, then

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1

 .

Now I can define, for permutation π, the n× n matrix Mπ as having eπi for its
ith column; this is how Artin represents a permutation as a matrix. For example,
if σ = (3 2 1), then Mσ =

(
1

1
1

)
.

Let’s see why this matrix definition makes sense. Using the column-expansion

perspective of matrix multiplication, with x =

x1
...

xn

,

Mπx = x1 · eπ1 + x2 · eπ2 + . . . + xn · eπn
=

...
xi

...

←− in row πi. (9)

In other words, when we multiply Mπ on the left of a column vector, we take
whatever value was in the ith row and move it to the πth

i row. For example,
Mσ

(
1
2
3

)
=

(
1

1
1

) (
1
2
3

)
=

(
2
3
1

)
. Continuing with this intuition, left-multiplying

9

by Mτ Mσ is like performing σ followed by τ in the sense that the ith row is moved
to the τ(σ(i))th. I personally prefer to have statements like this algebraically
checked, so in the next couple of paragraphs, I’ll spell out more carefully why
this is true.

It’s useful to slightly rewrite (9) as in the right-hand expression below, using the
notation [v]i to indicate the ith coordinate of column vector v:

Mπ

x1
...

xn

πi

= xi ⇒ [Mπx]i = xπ−1i. (10)

So left-multiplying by both Mτ and Mσ works like so, using (10):

[Mτ Mσx]i = [Mσx]τ−1(i) = xσ−1(τ−1(i)). (11)

Writing Mστ for the matrix of permutation στ , we have

[Mστ x]i = x(στ)−1(i) = xσ−1(τ−1(i)). (12)

Together, (11) and (12) confirm that:

Mστ = Mτ Mσ

in the sense that they act the same in matrix multiplications, from which we
can conclude that they are in fact identical matrices.

At long last, I’m ready to (re)define the sign() function, following Artin:

sign(π) := det(Mπ),

where det() is the determinant function of a square matrix.

It turns out that this definition is also consistent with our earlier definitions
because:

• det(Mt) = −1 for any transposition t because exchanging any two columns
of a matrix negates its determinant; and

• when π =
∏k

i=1 ti for transpositions (ti)k
1 , sign(π) = det(Mπ)

= det(
∏k

i=1 Mti
) = (−1)k = our cut-merge definition of sign(),

based on (5).

In using this approach, Artin is able to show that (6) holds simply by delegating
the work to the properties of matrix determinants. In particular, using the fact
that det(AB) = det(A) det(B):

sign(σ · τ) = det(Mτ Mσ) = det(Mτ) det(Mσ) = sign(σ)sign(τ).

10

Artin’s proof is certainly valid, though I think it offers less insight into why
equation (6) holds when compared to the cut-merge proof.

5 Cycle Structures
Let σ = (1 3)(2 4 5) and τ = (1 4)(2 3). Then

στ = (1 2)(3 4 5), and
τσ = (1 5 2)(3 4).

Notice that these two permutations each have one cycle of length 2 and another
of length 3. Is this a coincidence? It turns out that this similarity of structure
will always hold between στ and τσ. I’ll have to define a new concept before I
can precisely formulate this relationship.

Definition Given a permtuation π, a cycle set S of π is a set of elements in
the domain of π such that, for any a, b ∈ S, ∃k : πk(a) = b. Notice that every
element in the domain of π is in exactly one cycle set of π.

The cycle structure cs(π) of π is a function f : N≥1 → N≥0 such that f(i) :=
the number of cycle sets of π with i elements.

As a shorthand, I’ll write (f(1), f(2), f(3), . . .) to express a cycle structure. For
example, when n = 5, the permutation (1 2)(3 4 5) has cycle structure (0, 1, 1);
so does the permutation (1 5 2)(3 4). Now I can state:

Observation 4 For any permutations σ and τ ,

cs(στ) = cs(τσ).

I’ll provide two proofs because they each shed their own light on why this is
true.

Proof 1 Given permutation π, I’ll write orderπ(i) = k to mean that πk(i) = i,
and there is no ℓ < k : πℓ(i) = i. To prove the observation, it’s sufficient to show
that there is a 1-1 and onto mapping f : [n]→ [n] such that orderστ (i) = k ⇔
orderτσ(f(i)) = k.

Suppose orderστ (i) = k. Let j = τ−1(i). In the following equations, I’ll use
a left-to-write, input-to-output notation, where iπ means π(i) and iστ means
τ(σ(i)). We have:

i = i(στ)k = jτ(στ)k = j(τσ)kτ.

Now apply τ−1 to the left-most and right-most expressions above to arrive at:

j = iτ−1 = j(τσ)k ⇒ orderτσ(j) ≤ k = orderστ (i). (13)

On the other hand, if ℓ = orderτσ(j), then

11

i = (j)τ = (j)(τσ)ℓτ = (j)τ(στ)ℓ = i(στ)ℓ

⇒ orderστ (i) ≤ ℓ = orderτσ(j). (14)

Combining (13) and (14),

orderστ (i) = orderτσ(j = τ−1(i)),

and it turns out that τ−1 is the mapping f : [n]→ [n] we needed to complete
the proof. □

Proof 2 Given any permutation product στ , we can decompose τ into
transpositions as in τ = t1 · · · tk. Now we can think in terms of a series of smaller
steps that carry us from στ over to τσ:

π0 = στ = σ · t1 · · · tk

π1 = tk · σ · τ · t−1
k = tkσt1 · · · tk−1

...
πk = t1 · · · tkστt−1

k · · · t
−1
1 = τσ.

Each small step here can be characterized as πi+1 = tk−iπitk−i, using the fact
that t−1

j = tj , which is true for any transposition. So the problem is reduced to
showing that, for any permutation π and transposition t,

cs(π) = cs(tπt). (15)

It turns out that applying t = (x y) in this manner simply swaps the places of x
and y in the cycle notation of π. For example:

(1 3)(1 2 5 3 7)(1 3) = (3 2 5 1 7).

This confirms (15), which completes the proof. □

Notice that observation 4 can be generalized for any rotation of any finite product
of permutations. For example,

cs(abcd) = cs(bcda) = cs(cdab) = cs(dabc).

The equation cs(στ) = cs(τσ) makes it tempting to suspect that cycle structure
is preserved no matter what order we multiply a given list of permutations.
For example, we could ask if the following identities would hold for any three
permutations a, b, c:

cs(abc) ?= cs(acb) ?= cs(bac) ?= cs(bca), etc.

for all the orderings of a, b, c; and similarly for any finite list of permutations.

12

But this is not true in general. For example, if a = (1 2 3), b = (1 2), c = (1 3),
then

a b c = (1 2 3)(1 2)(1 3) = (1 3 2)
c b a = (1 3)(1 2)(1 2 3) = e.

There is a natural follow-up question to observation 4 which I can state clearly
once I’ve provided a couple new definitions.

Given any permutation π, let

flips(π) := {b · a : π = a · b}.

And let

same_cycles(π) := {σ ∈ Sn : cs(σ) = cs(π)}.

Question 1 Observation 4 tells us that, for any π ∈ Sn,

flips(π) ⊂ same_cycles(π).

Are these sets actually equal?

This is similar to asking: Given π and the freedom to decompose it as π = a · b,
what are all the possible values of b · a?

The answer arises from a simple permutation decomposition. Let’s start with:

Observation 5 The cycle notation of τ−1στ is the same as the cycle
notation of σ after each element i is replaced with (i)τ .

The observation is true because

(iτ)(τ−1στ) = iστ ;

that is, if σ′ := τ−1στ and σ : i 7→ j, then σ′ : iτ 7→ jτ .

For example, if τ = (2 5 3) and σ = (1 2)(3 4 5), then

τ−1στ = (1 5)(2 4 3) = [(1 2)(3 4 5)].replace(τ).

Note that this replacement operation is specific to cycle notation. If we were to
instead write out π as the string π1π2 . . . πn, then the corresponding string for
τ−1στ is no longer replacement with τ . I’ll illustrate this distinction with an
example:

τ = (2 5 3)
σ = 2 1 4 5 3 (This is σ1σ2σ3σ4σ5.)

τ−1στ = 5 4 2 3 1 ̸= [2 1 4 5 3].replace(τ)
στ = 5 1 4 3 2 = [2 1 4 5 3].replace(τ).

13

To help build intuition for the set same_cycles(π), we can choose a canonical “first”
element of same_cycles(π). A simple way to do this it to treat all singleton-free
cycle notations in same_cycles(π) as strings, treating the “)” character as the last
in the alphabet (we’ll ignore the “(” character for the sake of ordering). Then we
can define canon(π) to be the lexicographically first element of same_cycles(π).
For example, canon(3 4 2)(1 5) = (1 2 3)(4 5). If we had not specified the
ordering of “)”, then it would be unclear if (1 2)(3 4 5) or (1 2 3)(4 5) were first.

Now we’re ready for:

Answer to Question 1 Given any σ ∈ same_cycles(π), we can decompose
π = a · b so that b · a = σ. That is, flips(π) = same_cycles(π).

Proof We can use observation 5 to find τ so that

π = τ−1στ. (16)

Let a = τ−1 and b = τπ. Then
ab = π

ba = τπτ−1 = σ by (16).
□

The main idea of this proof is to use observation 5 to see that cs(τ−1στ) = cs(σ)
for any τ . As the proof shows, by choosing the right τ , we can make τ−1στ
equal to anything in flips(σ). And anything of the form τ−1στ is in flips(σ) by
considering a = τ and b = τ−1σ.

Note that the τ used in the proof may not be unique because there are different
cycle notation strings for the same permutation. Consider π = (1 2) and
σ = (3 4). We can convert π into σ in different ways:

(1 2) (1 2)
↓ ↓ τ = (1 3)(2 4) ↓ ↓ τ ′ = (1 4)(2 3)

(3 4) (4 3)

The above diagram is an informal way of writing that

τ−1πτ = (3 4) = (4 3) = τ ′−1πτ ′.

6 The Magnitude is Like a Norm
In this section I’ll point out some interesting properties of the magnitude function.

Observation 6 For any permutations π and σ:
1. m(π) ≥ 0; and m(π) = 0 iff π = e.
2. m(πσ) ≤ m(π) + m(σ).
3. m(π−1) = m(π).
4. m(πσ) = m(σπ).

14

Proof Start by noticing that m(π) is the least number of transpositions by
which we can get from e to π; ie, m(π) is the least integer for which we can write
π =

∏m(π)
i=1 ti for some transpositions (ti)m(π)

1 .

Considering each of π and σ as a composition of this minimal number of trans-
positions, parts (i) and (ii) are straightforward.

Part (iii) follows since the cycle notation for π−1 is simply the reverse of the
cycle notation for π.

Part (iv) follows from observation 4. □

In many ways, the magnitude of a permutation acts like a vector norm — the
key difference is that we don’t have a meaningful interpretation of kπ for any
k ∈ R, so we don’t have the additional rule m(kπ) = |k| ·m(π).

This makes it interesting to define a notion of distance between permutations:

Definition Given permutations π and σ,

dist(π, σ) := m(π−1σ).

I’ll justify why this definition makes sense. Let x = π−1σ. Then πx = σ, so
dist(π, σ) is measuring the fewest “hops” — transpositions — needed to get from
π to σ.

We’d like a good distance function to be symmetric, and luckily for us, this one
is:

dist(σ, π) = m(σ−1π) = m(π−1σ) = dist(π, σ),

the middle equality following since m(π) = m(π−1) by observation 6. This sym-
metry addresses the apparent inelegance of the definition; indeed, the definition
may appear to treat π and σ differently, but the end result does not depend on
the order of these inputs to dist().

To conclude this note, I’ll ask a fun and intriguing question whose answer I don’t
yet know:

Question 2 Is there a way to generalize Sn and m(·) so that the product
k · π makes sense for some values of k ∈ R, and so that m(k · π) = |k| ·m(π)?

References
Artin, M. 1991. Algebra. Prentice Hall.

Herstein, I. N. 1990. Abstract Algebra. Macmillan Pub.

15

	Cycle Notation
	The Cut-Merge Operation
	The Magnitude and Parity of a Permutation
	Previous Approaches to Permutation Parity
	Herstein's Proof
	Artin's Proof

	Cycle Structures
	The Magnitude is Like a Norm
	References

